Liquid Surfaces and Solid-Liquid Interfaces

  • M. P. Tosi
Part of the Physics of Solids and Liquids book series (PSLI)


The study of capillarity in terms of interatomic forces originates from the work of Young, Laplace, and Gauss and was based essentially on mechanical considerations, while the use of thermodynamics combined with the notion of a continuous density profile at the interface between a liquid and its vapor is mainly due to van der Waals. The formal statistical mechanics of inhomogeneous fluids is now well developed and is finding a number of applications to liquid—vapor interfaces. These applications have been stimulated by the progress that has taken place over the last two decades in understanding the bulk thermodynamics and structure of liquids (atomic and molecular liquids, liquid metals and alloys, molten salts and other ionic liquids) but have been mostly limited so far to simple fluids. Much remains to be done for a microscopic understanding of important phenomena such as the segregation of the components in the surface region of a liquid alloy. Even less is known at the microscopic level about interfaces between liquids and solids, in spite of the technical relevance of such phenomena as are involved in wetting, nucleation, and electrodics. The aim of this chapter is to provide a short introduction to this vast and important field.


Interfacial Tension Density Profile Liquid Surface Surface Free Energy Excess Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
  2. 2.
    C. A. Croxton, Introduction to Liquid State Physics, Wiley, New York (1975).Google Scholar
  3. 3.
    T. E. Faber, An Introduction to the Theory of Liquid Metals, Cambridge University Press (1973).Google Scholar
  4. 4.
    F. P. Buff and R. A. Lovett, in: Simple Dense Fluids, Academic Press, New York (1968).Google Scholar
  5. 5.
    G. J. Janz, Molten Salts Handbook, Academic Press, New York (1967).Google Scholar
  6. 6.
    P. A. Egelstaff and B. Widom, J. Chem. Phys. 53, 2667 (1970).CrossRefGoogle Scholar
  7. 7.
    B. Widom, J. Chem. Phys. 43, 3892 (1965).CrossRefGoogle Scholar
  8. A. B. Bhatia and N. H. March, J. Chem. Phys. 68, 4651 (1978).CrossRefGoogle Scholar
  9. 9.
    W. Kohn and A. Yaniv, Phys. Rev. B 20, 4948 (1979).CrossRefGoogle Scholar
  10. 10.
    E. Roman, G. Senatore, and M. P. Tosi, J. Phys. Chem. Solids 43, 1093 (1982); K. Singwi and M. P. Tosi, Phys. Rev. B 23, 1640 (1981).Google Scholar
  11. 11.
    D. Turnbull, J. Chem. Phys. 18 768 (1950); J. Appl. Phys. 21 1022 (1950); J. H. Perepezko, Rapid Solidification Processing — Principles and Technologies (M. Cohon, B. H. Kear, and R. Mehrabian, eds.), in press.Google Scholar
  12. 12.
    C. Herring, in: The Physics of Powder Metallurgy, McGraw-Hill, New York (1951).Google Scholar
  13. 13.
    D. P. Woodruff, The Solid–Liquid Interface, Cambridge University Press (1973).Google Scholar
  14. 14.
    J. O’M. Bockris, B. E. Conway, and E. Yeager (eds.), Comprehensive Treatise of Electrochemistry, Vol. 1, Plenum Press, New York (1980).Google Scholar
  15. 15.
    J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Plenum Press, New York (1977).Google Scholar
  16. 16.
    The original paper of van der Waals, published in 1893, has been translated into English by J. S. Rowlinson, J. Stat. Phys. 20, 197 (1979).CrossRefGoogle Scholar
  17. 17.
    J. G. Kirkwood and F. Buff, J. Chem. Phys. 17, 338 (1949).CrossRefGoogle Scholar
  18. 18.
    D. G. Triezenberg and R. Zwanzig, Phys. Rev. Lett. 28, 1183 (1972).CrossRefGoogle Scholar
  19. 19.
    R. Evans, Adv. Phys. 28, 143 (1979).CrossRefGoogle Scholar
  20. 20.
    R. H. Fowler, Proc. R. Soc. London, Ser. A 159, 229 (1937).CrossRefGoogle Scholar
  21. 21.
    I. R. McDonald and K. S. C. Freeman, Mol. Phys. 26, 529 (1973).CrossRefGoogle Scholar
  22. 22.
    M. V. Berry, in: Surface Science, Vol. 1, International Atomic Energy Agency, Vienna (1975).Google Scholar
  23. 23.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); N. D. Mermin, Phys. Rev. 137, A1441 (1965); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  24. 24.
    W. F. Saam and C. Ebner, Phys. Rev. A 15, 2566 (1977).CrossRefGoogle Scholar
  25. 25.
    A. J. M. Yang, P. D. Fleming, and J. H. Gibbs, J. Chem. Phys. 64, 3732 (1976).CrossRefGoogle Scholar
  26. 26.
    A. B. Bhatia and N. H. March, J. Chem. Phys. 68, 1999 (1978).CrossRefGoogle Scholar
  27. 27.
    P. D. Fleming, A. J. M. Yang, and J. H. Gibbs, J. Chem. Phys. 65, 7 (1976); A. B. Bhatia, N. H. March, and M. P. Tosi, Phys. Chem. Liq. 9, 229 (1980); G. Senatore and M. P. Tosi, Nuovo Cimento 56B, 169 (1980).CrossRefGoogle Scholar
  28. 28.
    R. C. Brown and N. H. March, J. Phys. C 6, L363 (1973).CrossRefGoogle Scholar
  29. C. F. von Weizsäcker, Z. Phys. 96 431 (1935); D. A. Kirznits, Soy. Phys. JETP 5,64 (1957).Google Scholar
  30. N. D. Lang and W. Kohn, Phys. Rev. B 1,4555 (1970); B 3 1215 (1971); N. D. Lang, Solid State Phys. 28 225 (1973).Google Scholar
  31. 31.
    J. A. Appelbaum and D. R. Hamann, Rev. Mod. Phys. 48, 479 (1976).CrossRefGoogle Scholar
  32. 32.
    M. P. D’Evelyn and S. A. Rice, Phys. Rev. Lett. 47, 1844 (1981); D. Sluis, M. P. D’Evelyn, and S. A. Rice, J. Chem. Phys. 78, 1611 (1983).Google Scholar
  33. 33.
    J. P. Hansen and L. Verlet, Phys. Rev. 184, 150 (1969).CrossRefGoogle Scholar
  34. 34.
    D. K. Chaturvedi, G. Senatore, and M. P. Tosi, Leu. Nuovo Cimento 30, 47 (1981); D. K. Chaturvedi, M. Rovere, G. Senatore, and M. P. Tosi, Physica B 111, 11 (1981).Google Scholar
  35. 35.
    A. Ferraz and N. H. March, Solid State Commun. 36, 977 (1980).CrossRefGoogle Scholar
  36. 36.
    T. V. Ramakrishnan and M. Yussouff, Solid State Commun. 21, 389 (1977); Phys. Rev. B 19, 2775 (1979).CrossRefGoogle Scholar
  37. 37.
    N. H. March and M. P. Tosi, Phys. Chem. Liq. 10, 185 (1980); 11, 79 and 89 (1981); M. Rovere, M. P. Tosi, and N. H. March, Phys. Chem. Liq. 12, 177 (1982).Google Scholar
  38. 38.
    F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford (1967); see also D. Kuhlmann-Wilsdorf, Phys. Rev. 140, A1599 (1965).CrossRefGoogle Scholar
  39. 39.
    S. F. Edwards and M. Warner, Phil. Mag. A40, 257 (1979).Google Scholar
  40. 40.
    A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys. 74 2559 (1981).Google Scholar
  41. 41.
    W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).CrossRefGoogle Scholar
  42. 42.
    K. A. Jackson, Liquid Metals and Solidification, ASM, Cleveland (1959).Google Scholar
  43. 43.
    D. E. Temkin, Crystallization Processes, Consultants Bureau, New York (1966).Google Scholar
  44. 44.
    G. Gouy, J. Chim. Phys. 29, 145 (1903); J. Phys. (Paris) 9, 457 (1910).Google Scholar
  45. 45.
    D. L. Chapman, Phil. Mag. 25, 475 (1913).Google Scholar
  46. 46.
    O. Stern, Z. Elektrochem. 30, 508 (1924).Google Scholar
  47. 47.
    S. H. Liu, Surf. Sci. 101, 49 (1980).Google Scholar
  48. 48.
    A. A. Kornyshev and M. A. Vorotyntsev, Surf. Sci. 101, 23 (1980).CrossRefGoogle Scholar
  49. 49.
    L. Blum J. Phys. Chem. 81 136 (1977); S. Levine and C. W. Outhwaite, J. Chem. Soc., Faraday Trans. 2 74 1670 (1978); S. Levine, C. W. Outhwaite, and L. B. Bhuiyan, J. Electroanal. Chem. 123 105 (1981).Google Scholar
  50. 50.
    M. J. Grimson and G. Rickayzen, Mol. Phys. 42, 767 (1981); 44, 817 (1981); 45, 221 (1982).Google Scholar
  51. 51.
    See Chapter 6 by G. Rickayzen, in this book.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • M. P. Tosi
    • 1
  1. 1.Istituto di Fisica Teorica dell’Università and International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations