Skip to main content

Pair Potentials in Metals and Alloys: Order, Stability, and Dynamics

  • Chapter
Amorphous Solids and the Liquid State

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

A full understanding of the physics of metallic bonding, including the energy, structure, and dynamics of perfect crystals, of defects such as substitutional impurities, vacancies, etc., of liquids and liquid mixtures, and finally of metastable phases such as glasses, requires the solution of the Schrödinger equation for 1023 electrons, all interacting with one another and with the positive ions. For a perfect crystal, Bloch’s theorem allows us to solve the equation only in one unit cell, and the electron—electron interaction problem may be greatly simplified by introducing the local-density approximation assuming that the exchange correlation potential is determined by the local electron density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a detailed discussion of the Born-Oppenheimer approximation see, e.g., G. V. Chester, Adv. Phys. 10, 357 (1961).

    Article  Google Scholar 

  2. W. Kohn and L. Sham, Phys. Rev. A 140 1133 (1965); for a discussion of the connection between the local density approximation and pseudopotential perturbation theory, see Hafner“ and Hafner and Eschrig.”

    Google Scholar 

  3. The first to invent the pseudopotential technique appears to be H. Hellmann, Acta Physico-Chimica URSS 1, 913 (1935); 4, 225 (1936).

    Google Scholar 

  4. V. Heine, D. Weaire, and M. H. Cohen, in: Solid State Physics, Vol. 24, Academic Press, New York (1971).

    Google Scholar 

  5. For a general review see E. G. Brovman and Yu. M. Kagan, in: Dynamical Properties of Solids (A. A. Maradudin and G. K. Horton, eds.), Vol. 1, North-Holland, Amsterdam (1974).

    Google Scholar 

  6. The second-order expansion was first given by M. H. Cohen, Phys. Rev. 130, 1301 (1963), an explicit form of the third-order expansion has been presented by P. Lloyd and C. A. Sholl, J. Phys. C 1, 1620 (1968), and an approximate form of the fourth-order term has been given by J. Hammerberg and N. W. Ashcroft, Phys. Rev. B 9, 409 (1974).

    Article  Google Scholar 

  7. M. W. Finnis, J. Phys. F 4, 1465 (1974).

    Google Scholar 

  8. D. Pines and Ph. Nozières, Elementary Excitations in Solids, Benjamin, New York (1962).

    Google Scholar 

  9. J. C. Kimball, Phys. Rev. A 7, 1648 (1973).

    Article  Google Scholar 

  10. D. J. W. Geldart and R. Taylor, Can J. Phys. 48, 167 (1970).

    Article  Google Scholar 

  11. P. Vashishta and K. S. Singwi, Phys. Rev. B 6, 875 (1972).

    Article  CAS  Google Scholar 

  12. S. Ichimaru and K. Utsumi, Phys. Rev. B 24, 7385. S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).

    Article  CAS  Google Scholar 

  13. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  Google Scholar 

  14. G. Solt, Phys. Rev. B 18, 720 (1978).

    Article  CAS  Google Scholar 

  15. J. Hafner and V. Heine, J. Phys. F 13, 2479 (1983).

    Article  CAS  Google Scholar 

  16. D. Pettifor, Physica Scripta T1, 26 (1982).

    Article  Google Scholar 

  17. W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).

    Google Scholar 

  18. M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

    Article  CAS  Google Scholar 

  19. J. Hafner, J. Phys. B 22, 351 (1975); 24, 41 (1976), J. Hafner and H. Eschrig, Phys. Status Solidi B 72, 179 (1976).

    Google Scholar 

  20. I. V. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).

    Article  CAS  Google Scholar 

  21. L. Dagens, M. Rasolt, and R. Taylor, Phys. Rev. B 11, 2726 (1975). M. Rasolt and R. Taylor, Phys. Rev. B 11, 2717 (1975).

    Article  Google Scholar 

  22. D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43 1494 (1979). G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26 4199 (1982).

    Google Scholar 

  23. N. W. Ashcroft, Phys. Rev. Lett. 23, 48 (1966).

    Google Scholar 

  24. J. Hafner, J. Phys. F 6, 1243 (1976).

    Article  CAS  Google Scholar 

  25. N. Q. Lam, N. van Doan, L. Dagens, and Y. Adda, J. Phys. F 11, 2231 (1981).

    Article  CAS  Google Scholar 

  26. P. Beauchamp, R. Taylor, and V. Vitek, J. Phys. F 4, 2017 (1975).

    Article  Google Scholar 

  27. G. Grimvall, in: Ab Initio Calculations of Phonon Dispersion Relations ( J. T. Devreese, ed.), Plenum Press, New York (1982).

    Google Scholar 

  28. D. Pettifor, in: Atomistics of Fracture, Proc. NATO—ASI, Corsica (1981).

    Google Scholar 

  29. J. Hafner and G. Punz, J. Phys. F 13, 1393 (1983).

    Article  CAS  Google Scholar 

  30. C. L. Leung, J. Phys. F 9, 179 (1979).

    Article  Google Scholar 

  31. J. Hafner, Phys. Rev. B 15, 617 (1977); 19, 5094 (1979).

    Google Scholar 

  32. J. Hafner, Phys. Rev. B 21, 406 (1980).

    Article  CAS  Google Scholar 

  33. A. Blandin, in: Phase Stability in Metals and Alloys ( P. S. Rudman, J. Stringer, and R. I. Jaffee, eds.), McGraw-Hill Book Co., New York (1967).

    Google Scholar 

  34. W. H. Young, in: Liquid Metals 76 (R. Evans and D. A. Greenwood, eds.), p. 1, The Institute of Physics, Bristol (1977).

    Google Scholar 

  35. J. Hafner, Phys. Rev. A 16, 351 (1977).

    Article  CAS  Google Scholar 

  36. H. C. Andersen, D. Chandler, and J. D. Weeks, Adv. Chem. Phys. 34, 105 (1976).

    Article  CAS  Google Scholar 

  37. H. C. Andersen and D. Chandler, J. Chem. Phys. 53, 547 (1970); ibid. 57, 1918 (1972).

    CAS  Google Scholar 

  38. M. Ross, Phys. Rev. B 21, 3140 (1980).

    Article  CAS  Google Scholar 

  39. G. Kahl and J. Hafner, Phys. Chem. Liq. 12, 109 (1982).

    Article  CAS  Google Scholar 

  40. G. Kahl and J. Hafner, Phys. Rev. A 29, 3310 (1984).

    Article  CAS  Google Scholar 

  41. C. Regnault, J. P. Badiali, and M. Dupont, J. Phys. C 8, 603 (1980); Phys. Lett. A 74, 245 (1979).

    Article  Google Scholar 

  42. J. Hafner and G. Kahl, J. Phys. F 14, 2259 (1984).

    Article  CAS  Google Scholar 

  43. G. Jacucci and R. Taylor, J. Phys. F 11, 787 (1981).

    Article  CAS  Google Scholar 

  44. J. Hafner and F. Sommer, CALPHAD 1, 351 (1977).

    Article  Google Scholar 

  45. P. Chieux and H. Ruppersberg, J. Physique (Paris), 41, C8–145 (1980).

    Google Scholar 

  46. J. Hafner, in: Liquid Metals 76 (R. Evans and D. A. Greenwood, eds.), p. 107, The Institute of Physics, Bristol (1977).

    Google Scholar 

  47. R. Evans, A. Copestake, H. Ruppersberg, and W. Schirmacher, J. Phys. F 13, 1993 (1983); J. Hafner, A. Pasturel, and P. Hicter, J. Phys. F 14, 1137 (1984); ibid 14, 2279 (1984).

    Google Scholar 

  48. W. Ostwald, Z. Phys. Chem. 22, 289 (1897).

    CAS  Google Scholar 

  49. J. Hafner, in: Nuclear Methods in the Investigation of Metallic Glasses (U. Gonser, ed.), At. Energy Rev., Suppl. 1, 27 (1981).

    Google Scholar 

  50. J. Hafner, J. Phys. C 16, 5773 (1983).

    Article  CAS  Google Scholar 

  51. J. Hafner and L. von Heimendahl, Phys. Rev. Lett. 42, 386 (1979).

    Article  CAS  Google Scholar 

  52. J. Hafner, Phys. Rev. B 26, 678 (1983).

    Article  Google Scholar 

  53. J. Hafner, Phys. Rev. B 28, 1734 (1983).

    Article  CAS  Google Scholar 

  54. P. Häussler, W. H. Müller, and F. Baumann, Z. Phys. B 35, 67 (1979). P. Häussler and F. Baumann, Z. Phys. B 49, 303 (1983).

    Google Scholar 

  55. U. Mizutani, in: Proc. 4th Int. Conf. On Rapidly Quenched Metals ( T. Masumoto and K. Suzuki, eds.), p. 1279, The Japan Institute of Metals, Sendai (1982).

    Google Scholar 

  56. T. Mizoguchi, H. Narumi, N. Akutsu, N. Watanabe, N. Shiotani and M. Ito, J. Non-Cryst. Solids 61+62, 285 (1984).

    Google Scholar 

  57. E. Nassif, P. Lamparter, W. Speri, and S. Steeb, Z. Naturforsch., 38a, 142 (1983).

    Google Scholar 

  58. J. Hafner, in: Ab Initio Calculations of Phonon Dispersion Relations (J. T. Devreese, ed.), p. 151, Plenum Press, New York (1982).

    Google Scholar 

  59. J. Hafner, J. Phys. C 14, L287 (1981).

    Article  CAS  Google Scholar 

  60. J. B. Suck, H. Rudin, H. J. Güntherodt, and H. Beck, J. Phys. C 14, 2305 (1981); J. Phys. F 11, 1375 (1981); Phys. Rev. Lett. 50, 49 (1983).

    Article  CAS  Google Scholar 

  61. J. B. Suck and H. Rudin, in: Glassy Metals II (J. J. Güntherodt and H. Beck, eds.), Topics in Applied Physics, Vol. 53, Springer-Verlag, Berlin-Heidelberg (1983), p. 217.

    Google Scholar 

  62. D. G. Pettifor and M. A. Ward, Sol. State Comm. 49, 291 (1984).

    Article  CAS  Google Scholar 

  63. J. Hafner and V. Heine, J. Phys. F,in press.

    Google Scholar 

  64. J. Hafner and G. Punz, Phys. Rev. B 30, 7336 (1984).

    Article  CAS  Google Scholar 

  65. G. Punz and J. Hafner, Z. Phys. B,in press.

    Google Scholar 

  66. T. Ohba, Y. Kitano, and Y. Komura, Acta Cryst. C 40, 1 (1984).

    Article  Google Scholar 

  67. J. Hafner, J. Phys. F,in press.

    Google Scholar 

  68. N. E. Christensen, Phys. Rev. B, in press.

    Google Scholar 

  69. J. Hafner and W. Weber, Sol. State Comm.,in press.

    Google Scholar 

  70. G. Jacucci, M. Ronchetti, and W. Schirmacher, in Neutron Physics Today and Tomorrow (Oxford, 1984 ).

    Google Scholar 

  71. A. Pasturel and J. Hafner, Phys. Rev. B,in press.

    Google Scholar 

  72. G. Kahl and J. Hafner, J. Phys. F,in press.

    Google Scholar 

  73. J. Hafner, in Amorphous Metals and Nonequilibrium Processing, ed. by M. von Allmen (Les Editions de physique, Paris 1984 ), p. 219.

    Google Scholar 

  74. J. Hafner, Proc. 5th Internat. Conference on Rapidly Quenched Metals,Würzburg 1984, J. Noncryst. Sol. 69 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hafner, J. (1985). Pair Potentials in Metals and Alloys: Order, Stability, and Dynamics. In: March, N.H., Street, R.A., Tosi, M.P. (eds) Amorphous Solids and the Liquid State. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9156-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9156-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9158-7

  • Online ISBN: 978-1-4757-9156-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics