Diffraction Studies of Liquids

  • J. E. Enderby
Part of the Physics of Solids and Liquids book series (PSLI)


Simple liquids are those for which the intermolecular potential-energy function Φ(r 1? r 2,..., r N ) has the special form given by
$$\Phi \left( {{r_1},{r_2}, \ldots ,{r_N}} \right) = \sum\limits_{i < j} {\Phi \left( {{r_k},{r_j}} \right)} $$
where r k is the position vector of the kth atom or ion in the liquid, N is the total number of atoms, and Φ is the so-called pair potential. We also assume that Φ is spherically symmetric, i.e., it is a function of \(\left| r \right| = \left| {{r_k} - {r_j}} \right|\) . For a simple mixture composed of, say, a and b atoms, the interactions are characterized by three pair potentials, each spherically symmetric, given by Φ aa (r), Φ bb (r)? and Φ ab (r)? There is a considerable body of evidence which suggests that Φ for the liquid form of the rare gases (Ar, Kr, Ne, and Xe) approximates very closely a sum of spherically symmetric pair potentials. An example of the potential Φ used for liquid rare gases is given in Figure 1.1. More surprisingly, a model based on pair potentials can also be justified for liquid nontransition metals like Na and Al. In these cases, the form of Φ is not so well defined, but the general features presented in Figure 1.1 do not probably involve a serious error. A review of the usefulness of pair potentials for metallic systems lies outside the scope of this treatment; the reader is referred to the book by Faber(1) and to the references cited therein. Pair potentials are also very useful in molten salts. This topic has been revewed by Sangster and Dixon.(2)


Molten Salt Radial Distribution Function Pair Potential Pair Correlation Function Amorphous Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Faber, Introduction to the Theory of Liquid Metals, Cambridge University Press (1972).Google Scholar
  2. 2.
    M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).CrossRefGoogle Scholar
  3. 3.
    M. L. Huggins and J. E. Mayer, J. Chem. Phys. 1, 643 (1933).CrossRefGoogle Scholar
  4. 4.
    F. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31 (1964).CrossRefGoogle Scholar
  5. 5.
    J. E. Mayer, J. Chem. Phys. 1, 270 (1933).CrossRefGoogle Scholar
  6. 6.
    D. E. Polk, J. Non-Cryst. Solids 11, 381 (1973).CrossRefGoogle Scholar
  7. 7.
    G. Placzek, Phys. Rev. 86, 377 (1952).CrossRefGoogle Scholar
  8. 8.
    J. G. Powles, Mol. Phys. 36, 1161 (1978).CrossRefGoogle Scholar
  9. 9.
    J. E. Enderby, in: Physics of Simple Liquids (H. N. V. Temperley, J. S. Rawlinson, and G. S. Rushbrooke, eds.), North-Holland, Amsterdam (1968).Google Scholar
  10. 10.
    C. N. J. Pings, in: Physics of Simple Liquids (H. N. V. Temperely, J. S. Rawlinson, and G. S. Rushbrooke, eds.), North-Holland, Amsterdam (1968).Google Scholar
  11. 11.
    G. Bacon, Neutron Diffraction, Clarendon Press, Oxford (1975).Google Scholar
  12. 12.
    G. Vineyard, Liquid Metals and Solidification, American Society for Metals, Cleveland, Ohio (1968).Google Scholar
  13. 13.
    D. T. Keating, J. Appl. Phys. 34, 923 (1963).CrossRefGoogle Scholar
  14. 14.
    J. E. Enderby, D. M. North, and P. A. Egelstaff, Phil. Mag. 14, 961 (1966).CrossRefGoogle Scholar
  15. 15.
    F. G. Edwards, J. E. Enderby, R. A. Howe, and D. I. Page, J. Phys. C 8, 3483 (1975).CrossRefGoogle Scholar
  16. 16.
    J. R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equation, Wiley, New York (1968).Google Scholar
  17. 17.
    S. Biggin and J. E. Enderby, J. Phys. C 15, L305 (1982).CrossRefGoogle Scholar
  18. 18.
    L. V. Woodcock and K. Singer, Trans. Faraday Soc. 67, 12 (1971).CrossRefGoogle Scholar
  19. 19.
    S. Biggin and J. E. Enderby, J. Phys. C 14, 3129 (1981).CrossRefGoogle Scholar
  20. 20.
    F. G. Edwards, R. A. Howe, J. E. Enderby, and D. I. Page, J. Phys. C 11, 1053 (1978).CrossRefGoogle Scholar
  21. 21.
    Y. Waseda, Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill, New York (1980).Google Scholar
  22. 22.
    C. A. Coulson and G. S. Rushbrooke, Phys. Rev. 56, 1216 (1939).CrossRefGoogle Scholar
  23. 23.
    H. Ohno and K. Furukawa, J. Chem. Soc., Faraday Trans. 1 77, 1981 (1981).CrossRefGoogle Scholar
  24. 24.
    J. E. Enderby and G. W. Neilson, Rep. Prog. Phys. 44, 593 (1981).CrossRefGoogle Scholar
  25. 25.
    M. Cutler, Liquid Semiconductors, Academic Press, New York (1977).Google Scholar
  26. 26.
    R. J. Newport, R. A. Howe, and J. E. Enderby, J. Phys. C 15, 4635 (1982).CrossRefGoogle Scholar
  27. 27.
    V. T. Nguyen, M. Gay, J. E. Enderby, R. J. Newport, and R. A. Howe, J. Phys. C 15, 4627 (1982).CrossRefGoogle Scholar
  28. 28.
    I. Hawker, R. A. Howe, and J. E. Enderby, Proc. Int. Conf. Electrical and Magnetic Properties of Liquid Metals, p. 262, UNAM, Mexico (1975).Google Scholar
  29. 29.
    S. Biggin and J. E. Enderby, J. Phys. C 14, 3577 (1981).CrossRefGoogle Scholar
  30. 30.
    J. A. Wilson, Adv. Phys. 21, 143 (1972).Google Scholar
  31. 31.
    F. Hulliger, Struct. Bonding (Berlin) 4, 83 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. E. Enderby
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of Bristol, Royal FortBristolEngland

Personalised recommendations