Crises in Ammonoid Evolution

  • Jost Wiedmann
  • Jürgen Kullmann
Part of the Topics in Geobiology book series (TGBI, volume 13)


During the Devonian, Carboniferous, and Permian periods, several severe changes occurred in the configuration of the tectonic plates, resulting in major changes in the areas of oceans and epicontinental seaways. The relatively rapid rate at which ammonoids evolved allows detailed information on changes in the environmental conditions and geological events that influenced the habitats of these animals (House, 1985a,b, 1989; Kullmann, 1983, 1985).


Extinction Event Lower Triassic Triassic Boundary Permian Ammonoid Eclogae Geol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, L. W.. Alvarez, W., Asaro, G., and Michel, H. V., 1980, Extraterrestrial cause for the Cretaceous—Tertiary extinction, Science 208: 1095–1108.PubMedCrossRefGoogle Scholar
  2. Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, O. H., Sylvester-Bradley, P. C., and Wright, C. W., 1957, Treatise on Invertebrate Paleontology, Part L, Mollusca 4, Geological Society of America and University of Kansas Press, Lawrence, KS.Google Scholar
  3. Arthur, M. A., Brumsack, H. J., Jenkyns, H. C., and Schlanger, S. O., 1990, Stratigraphy, geochemistry, and palaeoceanography of carbon-rich Cretaceous sequences, in: Cretaceous Resources, Events and Rhythms ( R. N. Ginsburg and B. Beaudoin, eds.), Kluwer Academic Publisher, Norwell, MA, pp. 75–119.Google Scholar
  4. Becker, R. T., 1993a, Analysis of ammonoid palaeobiogeography in relation to the global Hangenberg (terminal Devonian) and Lower Alum Shale (Middle Tournaisian) events, Ann. Soc. Geol. Belg. 115: 459–473.Google Scholar
  5. Becker, R. T., 1993b, Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 115–163.Google Scholar
  6. Claoué-Long, J. C., Jones, P. J., Roberts, J., and Maxwell, S., 1992, The numerical age of the Devonian—Carboniferous boundary, Geol. Mag. 129: 281–291.CrossRefGoogle Scholar
  7. Donovan, D. T., 1988, Evolution of the Arietitidae and their descendants, Cah. Inst. Cath. Lyon, Ser. Sci. 1: 123–138.Google Scholar
  8. Donovan, D. T., Callomon, J. H., and Howarth, M. K., 1981, Classification of Jurassic Ammonitina, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 101–155.Google Scholar
  9. Föllmi, K. B., Weisser, H., Bisping, M., and Funic, H., 1994, Phosphogenesis, carbon-isotope stratigraphy and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin, Geol. Soc. Am. Bull. 106: 729–746.CrossRefGoogle Scholar
  10. Glenister, B. F., and Furnish, W. M., 1981, Permian Ammonoids, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 49–64.Google Scholar
  11. Hallam, A., 1986, The Pliensbachian and Tithonian extinction events, Nature 319: 765–768.CrossRefGoogle Scholar
  12. Hallam, A., 1987, Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe, Paleobiology 13: 152–168.Google Scholar
  13. Hancock, J. M., and Kennedy, W. J., 1993, The high Cretaceous ammonite fauna from Tercis, Landes, France, Bull. Inst. R. Sci. Nat. Belg. Sci. Terre 63: 149–170.Google Scholar
  14. Hancock, J. M., Peake, N. B., Burnett, J., Dhondt, A. V., Kennedy, W. J., and Stokes, R. B., 1993, High Cretaceous biostratigraphy at Tercis, south-west France, Bull. Inst. R. Sci. Nat. Belg. Sci. Terre 63: 133–148.Google Scholar
  15. Hal, B. U.. Hardenbol, J., and Vail, P.. 1987, Chronology of fluctuating sea level since the Triassic, Science 235: 1156–1167.CrossRefGoogle Scholar
  16. Harland, W. B.. Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G., 1990, A Geologic Time Scale 1989, Cambridge University Press, Cambridge.Google Scholar
  17. House, M. R., 1983, Devonian eustatic events, Proc. Ussher Soc. 5: 396–405.Google Scholar
  18. House, M. R., 1985a. Correlation of mid-Paleozoic ammonoid evolutionary events with global sedimentary perturbations, Nature 313: 17–22.CrossRefGoogle Scholar
  19. House, M. R., 1985b, The ammonoid time-scale and ammonoid evolution Geol. Soc. Lond. Mem. 10: 273–283.CrossRefGoogle Scholar
  20. House, M. R., 1989, Ammonoid extinction events, in: The Chronology of the Geological Record (E. J. Snelling, ed.), Phil. Trans. R. Soc. Lond. [Biol.] 325: 307–326.Google Scholar
  21. Jones, P. J., 1988, Comments on some Australian, British and German isotopic age data for the Carboniferous System. Newsl. Carbon Stratigr. 6: 26–29.Google Scholar
  22. Korn, D., and Kullmann, J., 1988, Changes in clymeniid diversity, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 25–28.Google Scholar
  23. Korn, D., and Kullmann, J 1993, GONIAT Database System, version 2.40, Tübingen.Google Scholar
  24. Korn, D., Kullmann, J., Kullmann, P. S., and Petersen, M. S., 1994, GONIAT, a computer retrieval system for Paleozoic ammonoids, J. Paleontol. 68: 1257–1263.Google Scholar
  25. Kullmann, J., 1983, Maxima im Tempo der Evolution karbonischer Ammonoideen, Paläontol. Z. 57: 231–240.Google Scholar
  26. Kullmann, J., 1985, Drastic changes in Carboniferous ammonoid rates of evolution, in: Sedimentary and Evolutionary Cycles (U. Bayer and A. Seilacher, eds. )Google Scholar
  27. Kullmann, J., 1985, Lect. Notes Earth Sci. 1: 35–47.CrossRefGoogle Scholar
  28. Kullmann, J., 1994, Diversity fluctuations in ammonoid evolution from Devonian to midCarboniferous, Cour. Forschungsinst. Senckenb. 169: 137–141.Google Scholar
  29. Kullmann, J., Korn, D., Kullmann, P. S., and Petersen, M. S., 1993, The Database System GONIAT—a tool for research on systematics and evolution of Paleozoic ammonoids, Geobios Mém. Spec. 15: 239–245.CrossRefGoogle Scholar
  30. Menning, M., 1992, Numerical time scale for the Permian, Permophiles 20: 2–5.Google Scholar
  31. Moore, R. C., 1950. Evolution of the Crinoidea in relation to major paleogeographic changes in Earth history, Rep. 18th Sess. Intern. Geol. Cong., Great Britain 1948 12: 27–53.Google Scholar
  32. Newell, N. D., 1952, Periodicity in invertebrate evolution, J. Paleontol. 26: 371–385.Google Scholar
  33. Newell, N. D., 1967, Revolutions in the history of life, Geol. Soc. Am. Spec. Pap. 89: 63–91.CrossRefGoogle Scholar
  34. Raup, D. M., and Sepkoski. J. J., 1984. Periodicity of extinctions in the geologic past, Proc. Natl. Acad. Sci. U.S.A. 81: 801–805.PubMedCrossRefGoogle Scholar
  35. Roberts, J., Claoué-Long, J. C., and Jones, P. J., 1991, Calibration of the Carboniferous and Early Permian of the Southern New England Orogen by Shrimp Ion Microprobe Zircon Analyses, Newsl. Carbon. Stratigr. 9: 15–17.Google Scholar
  36. Ruzhentsev, V. E., 1959, Klassifikatsia nadsemeistva Otocerataceae, Paleontol. Zh. 159 (2): 56–67.Google Scholar
  37. Schindewolf, O. H., 1945, Darwinismus oder Typostrophismus? Magy. Biot. Kutato Intezet. Munkai 16: 104–177.Google Scholar
  38. Schindewolf, O. H., 1954, Ober die möglichen Ursachen der grossen erdgeschichtlichen Faunenschnitte, N. Jb. Geol. Paldont. Mh. 1954: 457–465.Google Scholar
  39. Schlager, W.. 1981, The paradox of drowned reefs and carbonate platforms, Geol. Soc. Am. Bull. 92: 197–211.CrossRefGoogle Scholar
  40. Sepkoski, J. J., 1986. Global bioevents and the question of periodicity, in: Global Bio-Events (O. H. Walliser, ed.)Google Scholar
  41. Sepkoski, J. J., 1986. Lect. Notes Earth Sci. 8: 47–61.CrossRefGoogle Scholar
  42. Sliter, W. V., 1976, Cretaceous foraminifers from the southwestern Atlantic Ocean, Leg 36, Deep Sea Drilling Project, Irait. Reps. DSDP 36: 519–537.Google Scholar
  43. Spinosa, C., Furnish, W. M., and Glenister, B. F., 1975, The Xenodiscidae, Permian ceratoid ammonoids, J. Paleontol. 49: 239–283.Google Scholar
  44. Teichert, C., 1990, The Permian–Triassic boundary revisited, Lect. Notes Earth Hist. 30: 199–238.CrossRefGoogle Scholar
  45. Tozer, E. T., 1971, One, two or three connecting links between Triassic and Jurassic ammonoids? Nature 232: 565–566.PubMedCrossRefGoogle Scholar
  46. Tozer, E. T.. 1981. Triassic Ammonoidea: Classification, evolution, and relationship with Permian and Jurassic forms, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.). Academic Press, London, pp. 46–100.Google Scholar
  47. Ward, P. D., 1988, Maastrichtian ammonite and inoceramid ranges from Bay of Biscay Cretaceous–Tertiary Boundary sections, in: Palaeontology and Evolution: Extinction Events (M. A. Lamolda. E. G. Kauffman, and O. H. Walliser. eds.), Rev. Esp. Paleont. núm. extraord., pp. 119–126.Google Scholar
  48. Ward, P. D., and Wiedmann, J., 1983, The Maastrichtian ammonite succession at Zumaya. Spain, Symposium Cretaceous Stage Boundaries, Abstracts, pp. 203–208.Google Scholar
  49. Wiedmann, J., 1968, Das Problem stratigraphischer Grenzziehung und die Jura/Kreide-Grenze, Eclogae Geol. Helv. 61: 321–386.Google Scholar
  50. Wiedmann, J., 1969, The heteromorphs and ammonoid extinction, Biol. Rev. 44: 563–602.CrossRefGoogle Scholar
  51. Wiedmann, J., 1970, Über den Ursprung der Neoammonoideen—Das Problem der Typogenese, Eclogae Geol. Helv. 63: 923–1020.Google Scholar
  52. Wiedmann, J., 1973a, Evolution or revolution of ammonoids at Mesozoic System boundaries, Biol. Rev. 48: 159–194.CrossRefGoogle Scholar
  53. Wiedmann, J., 1973b, Ancyloceratina (Ammonoidea) at the Jurassic/Cretaceous boundary. in: Atlas of Paleobiogeography ( A. Hallam, ed.), Elsevier Scientific, Amsterdam, pp. 309–316.Google Scholar
  54. Wiedmann, J., 1975, The Jurassic-Cretaceous boundary as one of the Mesozoic System boundaries, Coll. Int. Lim. Jur.–Crét., Lyon and Neuchatel 1973, Mém. Bur. Rech. Geol. Min. 86: 14–22.Google Scholar
  55. Wiedmann, J., 1986, Macro-invertebrates and the Cretaceous–Tertiary boundary, in: Global Bio-Events (O. H. Walliser, ed.)Google Scholar
  56. Wiedmann, J., 1986, Lect. Notes Earth Sci. 8: 397–409.CrossRefGoogle Scholar
  57. Wiedmann, J., 1988a, Ammonoid extinction and the “Cretaceous–Tertiary boundary, event,” in: Cephalopods—Present and Past (J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 117–140.Google Scholar
  58. Wiedmann, J., 1988b. Plate tectonics, sea level changes, climate and the relationship to ammonite evolution, provincialism, and mode of life, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 737–765.Google Scholar
  59. Wiedmann, J., 1988c, The Basque coastal sections of the K/T boundary: A key to understanding “mass extinction” in the fossil record, in: Palaeontology and Evolution: Extinction Events (M. A. Lamolda, E. G. Kauffman, and O. H. Walliser, eds.), Rev. Esp. Paleont. núm. extraord., pp. 127–140.Google Scholar
  60. Wright, C. W., 1981, Cretaceous Ammonoidea, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 157–174.Google Scholar
  61. Yanshin, A. L., 1973, On so-called world transgressions and regressions, Byull. Mosk. Ova. Ispyt. Prir. Otd. Geol. 48 (2): 9–44 (in Russian).Google Scholar
  62. Ziegler, B., 1974, Über Dimorphismus und Verwandtschaftsbeziehungen bei Oppelien des oberen Juras, Stuttg. Beitr. Naturkd. Ser. B 11: 1–43.Google Scholar
  63. Ziegler, W., and Lane, H. R., 1987, Cycles in conodont evolution from Devonian to mid-Carboniferous, in: Palaeobiology of Conodonts ( R. C. Aldridge, ed.), British Micropalaeontological Society, London, pp. 147–163.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jost Wiedmann
    • 1
  • Jürgen Kullmann
    • 1
  1. 1.Geologisch-Paläontologisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations