Mode and Rate of Growth in Ammonoids

  • Hugo Bucher
  • Neil H. Landman
  • Susan M. Klofak
  • Jean Guex
Part of the Topics in Geobiology book series (TGBI, volume 13)

Abstract

In this chapter we discuss the mode and rate of growth in ammonoids, focusing primarily on postembryonic growth. We first discuss the general mode of growth and then describe the ontogenetic sequence of growth stages. These stages are recognized on the basis of changes in morphology. For example, a gràph of the increase in size of whorl width versus shell diameter in an individual reveals changes through ontogeny that pinpoint the end of one growth stage and the beginning of another. We next discuss the overall rate of growth through ontogeny and establish a generalized growth curve. In this discussion, we refer to other cephalopods whose rate of growth is known. Fluctuations in the rate of growth that are superimposed on this growth curve are indicated in ammonoids by the presence of such shell features as varices and constrictions.

Keywords

Middle Jurassic Middle Triassic Early Jurassic Growth Line Soft Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkell, W. J., Kummel, B., and Wright, C. W., 1957, Mesozoic Ammonoidea, in: Treatise on Invertebrate Paleontology. Part L, Moll usco 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 80–465.Google Scholar
  2. Bandel, K., Landman, N. H., and Waage, K. M., 1982, Micro-ornament on early whorls of Mesozoic ammonites: Implications for early ontogeny, J. Paleont. 56 (2): 386–391.Google Scholar
  3. Bayer, U., 1972a. Zur Ontogenie und Variabilität des jurassischen Ammoniten Leioceras opalinum, N. Jb. Geol. Paläont. Abh. 140: 306–327.Google Scholar
  4. Bayer, U., 1972b, Ontogenie der liassischen Ammonitengattung Bifericeras, Paläontol. Z. 46: 225–241.Google Scholar
  5. Bayer, U., 1977, Cephalopoden-Septen. Teil 2. Regelmechanismen im Gehäuse-und Septenbau der Ammoniten, N. Jb. Geol. Paläont. Abh. 155: 162–215.Google Scholar
  6. Birkelund, T., 1981, Ammonoid shell structure, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 177–214Google Scholar
  7. Blind, W., and Jordan, R., 1979, “Septen-Gabelung” an einer Dorsetensia romani (Oppel) aus dem nordwestdeutschen Dogger, Paläontol. Z. 53:137–141.Google Scholar
  8. Bogoslovsky, B. I., 1982, An interesting form of apertural formation in the shell of clymeniids, Dokl. Akad. Nauk SSSR 264 (6): 1483–1486Google Scholar
  9. Boletzky, S. v., 1983, Sepia officinalis, in: Cephalopod Life Cycles, Vol. I (P. R. Boyle, ed.), Academic Press, New York, pp. 31–52.Google Scholar
  10. Boucot, A. J., 1953, Life and death assemblages among fossils, Am. J. Sci. 251: 25–40.Google Scholar
  11. Boyle, P. R., and Thorpe, R. S., 1984, Optic gland enlargement and female gonad maturation in a population of the octopus Eledone cirrhosa: A multivariate analysis, Mar. Biol. 79: 127–132Google Scholar
  12. Brett, C. E., and Seilacher, A., 1991, Fossil Lagerstätten: A taphonomic consequence of event sedimentation, in: Cycles and Events in Stratigraphy ( G. Einsele, W. Ricken, and A. Seilacher, eds.), Springer-Verlag, New York, pp. 283–297.Google Scholar
  13. Buchardt, B., and Weiner, S., 1981, Diagenesis of aragonite from Upper Cretaceous ammonites: A geochemical case-study, Sedimentology 28: 423–438.Google Scholar
  14. Bucher, H., and Guex, J., 1990, Rythmes de croissance chez les ammonites triasiques, Bull. Soc. Vaudoise Sci. Nat. 80 (2): 191–209.Google Scholar
  15. Callomon, J. H., 1963, Sexual dimorphism in Jurassic ammonites, Trans. Leicester Lit. Phil. Soc. 57: 21–56.Google Scholar
  16. Callomon, J. H., 1981, Dimorphism in ammonoids, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 257–273Google Scholar
  17. Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Spec. Pap. Palaeont. 33: 49–90.Google Scholar
  18. Carlson, B., Awai, M., and Arnold, J., 1992, Waikiki Aquarium’s Chambered Nautilus reach their first “Hatch-day” anniversary, Hawaiian Shell News 40(1): 1, 3–4.Google Scholar
  19. Carriker, M. R., 1972, Observations on removal of spines by muricid gastropods during shell growth, Veliger 15: 69–74.Google Scholar
  20. Chamberlain, J. A., Jr., 1978, Permeability of the siphuncular tube of Nautilus: Its ecologic and paleoecologic implications, N. Jb. Geol. Paläont. Mh. 3: 129–142.Google Scholar
  21. Checa, A., 1987, Morphogenesis in ammonites—differences linked to growth pattern, Lethaia 20: 141–148.Google Scholar
  22. Checa, A., 1994, A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures, Palaeontology (Lond.) 37 (4): 863–888.Google Scholar
  23. Checa, A., and Martin-Ramos, D., 1989, Growth and function of spines in the Jurassic ammonite Aspidoceras, Palaeontology (Lond.) 32: 645–655.Google Scholar
  24. Checa, A., and Sandoval, J., 1989, Septal retraction in Jurassic Ammonitina, N. Jb. Geol. Paläont. Mh. 4: 193–211.Google Scholar
  25. Checa, A., and Westermann, G. E. G., 1989, Segmental growth in planulate ammonites: Inferences on costal function, Lethaia 22: 95–100.Google Scholar
  26. Clausen, C.-D., 1968, Oberdevonische Cephalopoden aus dem Rheinischen Schiefergebirge. I. Orthocerida, Bactritida, Palaeontogr. Abt. A 128: 1–86.Google Scholar
  27. Cobban, W. A., 1951, Scaphitoid cephalopods of the Colorado group, U.S. Geol. Surv. Prof. Pap. 239: 1–42.Google Scholar
  28. Collins, D, and Ward, P. D., 1987, Adolescent growth and maturity, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 421–432.Google Scholar
  29. Collins, D., Ward, P. D., and Westermann, G. E. G., 1980, Function of cameral water in Nautilus, Paleobiology 6: 168–172.Google Scholar
  30. Cowen, R., Gertman, R., and Wright, G., 1973, Camouflage patterns in Nautilus and their implications for cephalopod paleobiology, Lethaia 6: 201–213.Google Scholar
  31. Crick, R. E., 1978, Morphological variations in the ammonite Scaphites of the Blue Hill Member, Carlile Shale, Upper Cretaceous, Kansas, Univ. Kans. Paleontol. Contrib. Pap. 88: 1–28Google Scholar
  32. Currie, E. D., 1942, Growth changes in the ammonite Promicroceras marstonense Spath, Proc. R. Soc. Edinb. Sect. B 61: 344–367.Google Scholar
  33. Currie, E. D., 1943, Growth stages in some species of Promicroceras, Geol. Mag. 80: 15–22.Google Scholar
  34. Currie, E. D., 1944, Growth stages in some Jurassic ammonites, Trans. R. Soc. Edinb. 61: 171–198.Google Scholar
  35. Davis, R. A., 1972, Mature modification and dimorphism in selected Late Paleozoic ammonoids, Bull. Am. Paleont. 62 (272): 27–130.Google Scholar
  36. Deevey, E. S., 1947, Life tables for natural populations of animals, Q. Rev. Biol. 22: 283–314.PubMedGoogle Scholar
  37. Denton, E., and Gilpin-Brown, J., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.Google Scholar
  38. Diener, C., 1895, Himalayan fossils—the Cephalopoda of the Muschelkalk, Palaeont. Indica Ser. 15, 112: 1–118.Google Scholar
  39. Doguzhaeva, L., 1982. Rhythms of ammonoid shell secretion, Lethaia 15: 385–394.Google Scholar
  40. Doguzhaeva, L. A., 1988, Siphuncular tube and septal necks in ammonite evolution, in: Cepha-lopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweïzerbart’sche Ver-lagsbuchhandlung, Stuttgart, pp. 291–302.Google Scholar
  41. Dommergues, J.-L., 1988, Can ribs and septa provide an alternate standard for age in ammonite ontogenetic studies?, Lethaia 21: 243–256.Google Scholar
  42. Druschits, V. V., Doguzhaeva, L. A., and Mikhailova, I. A., 1977, The structure of the ammonitella and the direct development of ammonites, Paleontol. J. 11 (2): 188–199.Google Scholar
  43. Elmi, S., and Benshili, K., 1987, Relation entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc), Boll. Soc. Paleontol. Ital. 26: 47–62.Google Scholar
  44. Engeser, T. S., 1990, Major events in cephalopod evolution, in: Major Evolutionary Radiations, Systematics Association Spec. Vol. 42 ( P. D. Taylor and G. P. Larwood, eds.), Clarendon Press, Oxford, pp. 119–138.Google Scholar
  45. Fagerstrom, J. A., 1964, Fossil communities in paleoecology: Their recognition and significance, Geol. Soc. Am. Bull. 75: 1197–1216.Google Scholar
  46. Forester, R. W., Caldwell, W. G. E., and Oro, E. H., 1977, Oxygen and carbon isotopic study of ammonites from the Late Cretaceous Bearpaw Formation in southwestern Saskatchewan, Can. J. Earth Sci. 14: 2086–2100.Google Scholar
  47. Forsythe, J. W., and Van Heukelem, W. F, 1987, Growth, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, New York, pp. 135–156.Google Scholar
  48. Geary, D. H., Breiske, T. A., and Bemis, B. E., 1992, The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of strombid gastropod shells, Palaios 7: 77–85.Google Scholar
  49. Gould, S. J., 1966, Allometry and size in ontogeny and phylogeny, Biol. Rev. 41: 587–640.PubMedGoogle Scholar
  50. Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Harvard University, Cambridge, MA. Grossman, E. L., and Ku, T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects, Chem. Geol. 59: 59–72.Google Scholar
  51. Guex, J., 1970, Sur les moules internes des Dactyliocératides, Bull. Lab. Geol. Mineral. Geophys. Mus. Geol. Univ. Lausanne 70 (182): 1–7.Google Scholar
  52. Heptonstall, W., 1970. Buoyancy control in ammonoids, Lethaia 3: 317–328.Google Scholar
  53. Hewitt, R. A., 1985, Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina, N. Jb. Geol. Paläont. Abh. 170 (3): 273–290.Google Scholar
  54. Hewitt, R. A., 1986, Terminology of ammonoid coiling equations, Lethaia 19: 338.Google Scholar
  55. Hewitt, R. A., 1988, Significance of early septal ontogeny in ammonoids and other ectocochliates, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 207–214.Google Scholar
  56. Hewitt, R. A., and Hurst, J. M., 1977, Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance, Lethaia 10: 287–301.Google Scholar
  57. Hewitt, R. A., and Hurst, J. M., 1983, Aspects of the ecology of actinocerid cephalopods, N. Jb. Geol. Paläont. Abh. 165 (3): 362–377.Google Scholar
  58. Hewitt, R. A., and Stait, B., 1988, Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids, Lethaia 21: 383–394.Google Scholar
  59. Hewitt, R. A., and Watkins, R., 1980, Cephalopod ecology across a late Silurian shelf tract, N. Jb. Geol. Paläont. Abh. 160 (1): 96–117.Google Scholar
  60. Hewitt, R. A., and Westermann, G. E. G., 1987, Function of complexly fluted septa in ammonoid shells, II, Septal evolution and conclusions, N. Jb. Geol. Paläont. Abh. 174 (2): 135–169Google Scholar
  61. Hewitt, R. A., Checa, A., Westermann, G. E. G., and Zaborski, P. M., 1991, Chamber growth in ammonites inferred from color markings and naturally etched surfaces of Cretaceous vasco-ceratids from Nigeria, Lethaia 24: 271–287.Google Scholar
  62. Hewitt, R. A., Westermann, G. E. G., and Checa, A., 1993, Growth rates of ammonites estimated from aptychi, Geobios Mem. Spec. 15: 203–208.Google Scholar
  63. Hirano, H., 1981, Growth rates in Nautilus macromphalus and ammonoids: Its implications, in: International Symposium on Conceptions and Methods in Paleontology, Barcelona ( J. Martinell, ed.), University of Barcelona, Barcelona, pp. 141–146.Google Scholar
  64. House, M. R., 1965, A study in the Tornoceratidae: The succession of Tornoceras and related genera in the North American Devonian, Phil. Trans. R. Soc. Lond. B 250 (763): 79–130Google Scholar
  65. Howarth, M. K., 1992, The ammonite family Hildoceratidae in the Lower Jurassic of Britian, Part 1, Palaeontologr. Soc. Monogr. (Land.) 145: 1–106.Google Scholar
  66. Hutchinson, G. E., 1978, An Introduction to Population Ecology, Yale University Press, New Haven.Google Scholar
  67. Hyatt, A., 1894, Phylogeny of an acquired characteristic, Proc. Am. Philos. Soc. 32 (143): 349–647Google Scholar
  68. Ivanov, A. N., 1971, On the problem of periodicity of the formation of septa in ammonoid shells and in that of other cephalopods, Uch. Zap. Yarvsl. Pedagog. Inst. Geol. Paleontol. 87: 127–130Google Scholar
  69. Ivanov, A. N., 1975, Late ontogeny in ammonites and its characteristics in micro-, macro-and megaconchs, Yarosl. Pedagog. Inst. Sb. Nauchn. Tr. 142: 5–57.Google Scholar
  70. Jacobs, D. K., 1992, Shape. drag, and power in ammonoid swimming, Paleobiologyl 8 (2): 203–220.Google Scholar
  71. Jacobs. D. K., and Landman. N. H., 1993, Nautilusa poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.Google Scholar
  72. Jacobs, D. K., Landman, N. H.. and Chamberlain, J. A., Jr., 1994, Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geology 22: 905–908.Google Scholar
  73. Jordan, R., and Stahl, W., 1970. Isotopische Paläotemperatur-Bestimmungen an jurassischen Ammoniten und grundsätzliche Voraussetzungen für diese Methode, Geol. Jb. 89: 33–62.Google Scholar
  74. Kahn, P. G. K., and Pompea, S. M., 1978, Nautiloid growth rhythms and dynamical evolution of the Earth–Moon system, Nature 275: 606–611.Google Scholar
  75. Kant, R., 1973a, “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäusen, N. Jb. Geol. Paläont. Abh. 142(1):97–114.Google Scholar
  76. Kant, R., 1973b, Allometrisches Wachstum paläozoischer Ammonoideen: Variabilität und Korrelation einiger Merkmale. N. Jb. Geol. Paläont. Abh. 143 (2): 153–192.Google Scholar
  77. Kant, R., 1973c, Untersuchungen des allometrischen Gehäusewachstums paläozoischer Ammonoideen unter besonder Berücksichtigung einzelner “Populationen,” N. Jb. Geol. Paläont. Abh. 144 (2): 206–251.Google Scholar
  78. Kant, R., and Kullmann, J., 1973, “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäuse, N. Jb. Geol. Paläont. Abh. 142:7–114.Google Scholar
  79. Kemper, E., and Wiedenroth, K., 1987, Klima und Tier-Migrationen am Beispiel der frühkretazischen Ammoniten Nordwestdeutschlands, Geol. Jahr. A 96: 315–363.Google Scholar
  80. Kennedy, W. J., 1988, Late Cenomanian and Turonian ammonite faunas from north-east and central Texas, Spec. Pap. Palaeontol. 39: 1–131.Google Scholar
  81. Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–94.Google Scholar
  82. Kidwell, S. M., and Bosence, D. W. J., 1991, Taphonomy and time-averaging of marine shelly faunas, in: Taphonomy—Releasing the Data Locked in the Fossil Record ( P. A. Allison and D. E. G. Briggs, eds.), Plenum Press, New York, pp. 115–209.Google Scholar
  83. Korn, D., and Price, J. D., 1987, Taxonomy and phylogeny of the Kosmoclymeniinae subfam. nov. (Cephalopoda, Ammonoidea, Clymeniida), Cour. Forschungsinst. Senckenb. 92: 5–75.Google Scholar
  84. Kulicki, C., 1974, Remarks on the embryogeny and postembryonal development of ammonites, Acta Palaeontol. Pol. 19: 201–224.Google Scholar
  85. Kulicki, C., 1979, The ammonite shell: Its structure, development and biological significance, Palaeontol. Pol. 39: 97–142.Google Scholar
  86. Kullmann, J., and Scheuch, J., 1970, Wachstums-Änderungen in der Ontogenese paläozoischer Ammonoideen, Lethaia 3: 397–412.Google Scholar
  87. Kullmann, J., and Scheuch. J., 1972, Absolutes and relatives Wachstum bei Ammonoideen, Lethaia 5: 129–146.Google Scholar
  88. Landman, N H, 1983, Ammonoid growth rhythms, Lethaia 16: 248.Google Scholar
  89. Landman, N. H., 1986, Developmental criteria for comparing ammonite ontogenies, Geol. Soc. Am. Abst. Prog. 18 (6): 665.Google Scholar
  90. Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns, and life history, Bull. Am. Mus. Nat. Hist. 185 (2): 117–241.Google Scholar
  91. Landman, N. H., 1988, Early ontogeny of Mesozoic ammonites and nautilids, in: Cephalopods—Present and Past ( J. Weidmann and J. Kullmann, eds.), Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 215–228.Google Scholar
  92. Landman, N. H., 1989, Iterative progenesis in Upper Cretaceous ammonites, Paleobiology 15 (2): 95–117.Google Scholar
  93. Landman, N. H., and Cochran, J. K., 1987, Growth and longevity of Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 401–420.Google Scholar
  94. Landman, N. H., and Klofak, S. M., Size frequency studies in Late Cretaceous ammonoids: Evidence for rate of growth, in prep.Google Scholar
  95. Landman, N. H., and Waage, K. M., 1986, Shell abnormalities in scaphitid ammonites, Lethaia 19: 211–224.Google Scholar
  96. Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming, Bull. Am. Mus. Nat. Hist. 215: 1–257.Google Scholar
  97. Landman, N. H., Tanabe, K., Mapes, R. H., Klofak, S. M., and Whitehill, J., 1993, Pseudosutures in Paleozoic ammonoids. Lethaia 26: 99–100.Google Scholar
  98. Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M., 1994, Early life history of Nautilus: Evidence from isotopic analysis of aquarium-reared specimens, Paleobiology 20 (1): 40–51.Google Scholar
  99. Lange, W., 1932, Über Symbiosen von Serpula mit Ammoniten im unteren Lias Norddeutschlands, Z. Dtsch. Geol. Ges. 84: 229–234.Google Scholar
  100. Lehmann, U., 1966, Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe, Paleontol. Z. 40: 26–55.Google Scholar
  101. Lehmann, U., 1981, The Ammonites: Their Life and Their World, Cambridge University Press, Cambridge. Linsley, R. M., and Javidpour, M., 1980, Episodic growth in Gastropoda, Malacologia 20: 153–160.Google Scholar
  102. Lominadzé, T. A., Sharikadzé, M. Z., and Kvantaliani, I. V., 1993, On mechanism of soft body movement within body chamber in ammonites, Geobios Mem. Spec. 15: 267–273.Google Scholar
  103. Mackenzie, C. L., Jr., 1960, Interpretation of varices and growth ridges on shells of Eupleura caudata, Ecology 41 (4): 783–784.Google Scholar
  104. Maeda, H., 1993, Dimorphism of Late Cretaceous false-puzosiine ammonites, Yokoyamaoceras Wright and Matsumoto, 1954 and Neopuzosia Matsumoto, 1954, Trans. Proc. Palaeont. Soc. Jpn. N.S. 169: 97–128.Google Scholar
  105. Makowski, H., 1962, Problem of sexual dimorphism in ammonites, Palaeontol. Pol. 12: 1–92.Google Scholar
  106. Makowski, H., 1971, Some remarks on the ontogenetic development and sexual dimorphism in the Ammonoidea. Acta Geol. Pol. 21 (3): 321–340.Google Scholar
  107. Mancini, E. A., 1978, Origin of micromorph faunas in the geologic record, J. Paleontol. 52(2): 311322.Google Scholar
  108. Mangold, K., 1983, Food, feeding and growth in cephalopods, Mem. Natl. Mus. Victoria 44: 81–93.Google Scholar
  109. Mangold, K., 1987, Reproduction, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, London, pp. 157–200.Google Scholar
  110. Matsukawa, M., 1987, Early shell morphology of Karsteniceras (ancyloceratid) from the Lower Cretaceous Choshi Group, Japan and its significance to the phylogeny of Cretaceous hetero-morph ammonites, Trans. Proc. Palaeont. Soc. Jpn. New Ser. 148: 346–359.Google Scholar
  111. Matsumoto, T., 1991, The Mid-Cretaceous ammonites of the family Kossmaticeratidae from Japan, Palaeont. Soc. jpn. Spec. Pap. 33: 1–143.Google Scholar
  112. Matsumoto, T., Muramoto, T., and Inoma, A., 1972, Two small desmoceratid ammonites from Hokkaido, Trans. Proc. Palaeont. Soc. jpn. New Ser. 87: 377–394.Google Scholar
  113. Matyja, B. A., 1986, Developmental polymorphism in Oxfordian ammonites, Acta Geol. Pol. 36 (1–3): 37–68.Google Scholar
  114. McConnaughey, T., 1989a, 13C and 180 isotopic disequilibrium in biological carbonates, I. Patterns, Geochim. Cosmochim. Acta 53: 151–162.Google Scholar
  115. McConnaughey, T., 1989b, 13C and 180 isotopic disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects, Geochim. Cosmochim. Acta 53:163–171.Google Scholar
  116. Meinhardt, H., and Klinger, M., 1987, A model for pattern formation on the shells of molluscs, J. Theor. Biol. 126: 63–89.Google Scholar
  117. Meischner, D., 1968, Pemiciöse Epökie von Placunopsis auf Ceratites, Lethaia 1: 156–174.Google Scholar
  118. Merkt, J., 1966, Über Austern und Serpeln als Epöken auf Ammonitengehäusen, N. Jb. Geol. Paläont. Abh. 125: 467–479.Google Scholar
  119. Mesnil, B., 1977, Growth and life cycle of squid, Loligo pealei and Illex illecebrosus, from the Northwest Atlantic, ICNAF Sel. Papers 2: 55–69.Google Scholar
  120. Mignot, Y., 1993, Un problème de paléobiologie chez les ammonoïdes (Cephalopoda): Croissance et miniaturisation en liaison avec les environnements, Docum. Lab. Geol. Lyon 124: 1–113.Google Scholar
  121. Mignot, Y., Elmi, S., and Dommergues, J.-L., 1993, Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignant de la Téthys toarcienne, Geobios Mem. Spec. 15: 305–312.Google Scholar
  122. Miller, A. K., Furnish, W. M., and Schindewolf, O. H., 1957, Paleozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L, Mollusca 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 11–80.Google Scholar
  123. Mojsisovics, E. v., 1886, Arktische Triasfaunen, Mem. Acad. Imp. Sci. St. Petersbourg 7: 33.Google Scholar
  124. Morton, N., 1988, Segregation and migration patterns in some Graphoceras populations (Middle Jurassic), in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweiz-erbart’sche Verlagsbuchhandlung, Stuttgart, pp. 377–385.Google Scholar
  125. Oba, T., Kai, M., and Tanabe, K., 1992, Early life history and habitat of Nautilus pompilius, Kagoshima Univ. Res. Center S. Pac. Occas. Pap. 1: 26–29.Google Scholar
  126. Obata, I., 1959, Croissance relative sur quelques espèces des Desmoceratidae, Mem. Fac. Sci. Kyushu Univ., Ser. D Geol. 9 (1): 33–45.Google Scholar
  127. Obata, I., 1960, Spirale de quelques ammonites, Mem. Fac. Sci., Kyushu Univ., Ser. D Geol. 9 (3): 151–163.Google Scholar
  128. Obata, I., 1965, Allometry of Reesidites minimus, a Cretaceous ammonite species, Trans. Proc. Palaeont. Soc. Japan, New Ser. 58: 39–63.Google Scholar
  129. Obata, I., Futakami, M., Kawashita, Y., and Takahashi, T., 1978, Apertural features in some Cretaceous ammonites from Hokkaido, Bull. Natl. Sci. Mus. Ser. C (Geol.) 4 (3): 139–155.Google Scholar
  130. Oechsle, E., 1958, Stratigraphie und Ammonitenfauna der Sonninien-Schichten des Filsgebiets unter besonderer Berücksichtigung der Sowerbyi-Zone (Mittlerer Dogger, Württemberg), Palaeontogr. Abt. A 111: 47–129.Google Scholar
  131. Okamoto, T., 1989, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontology (Land.) 31 (2): 281–294.Google Scholar
  132. Okamoto, T., 1993, Theoretical modelling of ammonite morphogenesis, N. Jb. Geol. Paläont. Abh. 190 (2/3): 183–190.Google Scholar
  133. Palframan, D. F. B., 1966, Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire, Palaeontology (Lond.) 9 (2): 290–311.Google Scholar
  134. Palframan, D. E B., 1967, Mode of early shell growth in the ammonite Promicrocems marstonense Spath, Nature (Land.) 216: 1128–1130.Google Scholar
  135. Pompeckj, J. E, 1884, Über Ammonoideen mit anomaler Wohnkammer, j. Ver. Vaterl. Naturk. Wurtt. 49: 220–290.Google Scholar
  136. Raup, D., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.Google Scholar
  137. Raup, D., and Chamberlain, J. A., Jr., 1967, Equations for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.Google Scholar
  138. Richard, A., 1970, Analyse du cycle sexual chez les céphalopodes mise en évidence expérimentale d’un rythme conditionné par les variations des facteurs externes et internes, Bull. Soc. Zool. Fr. 95: 461–469.Google Scholar
  139. Richards, R. P., and Bambach, R. K., 1975, Population dynamics of some Paleozoic brachiopods and their paleoecological significance, J. Paleontol. 49 (5): 775–798.Google Scholar
  140. Rieber, H., 1963, Ammoniten und Stratigraphie des Braunjura ß der Schwaebischen Alb., Palaeontogr. Abt. A 122: 1–89.Google Scholar
  141. Rounsefell, G. A., and Everhart, W. H., 1953, Fishery Science—Its Methods and Applications, John Wiley & Sons, New York.Google Scholar
  142. Rye, D. M., and Sommer, M. A., 1980, Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 169–202.Google Scholar
  143. Saunders, W. B., 1983, Natural rates of growth and longevity of Nautilus belauensis, Paleobiology 9 (3): 280–288.Google Scholar
  144. Schindewolf, O. H., 1934, Über Epöken auf Cephalopoden-Gehäusen, Palaeontol. Z. 16: 15–31.Google Scholar
  145. Schindewolf, O. H., 1958, Über Aptychen (Ammonoidea), Palaeontogr. Abt. A 111: 1–46.Google Scholar
  146. Seilacher, A., 1960, Epizoans as a key to ammonoid ecology, J. Paleontol. 34: 189–193.Google Scholar
  147. Seilacher, A., 1982, Ammonite shells as habitats in the Poseidonia Shales of Holzmaden—floats or benthic islands? N. Jb. Geol. Paläont. Abh. 159: 98–114.Google Scholar
  148. Seilacher, A., 1988, Why are nautiloid and ammonite sutures so different? N. Jb. Geol. Paläont. Abh. 177: 41–67.Google Scholar
  149. Seilacher, A., and Gunji, P. Y., 1993, Morphogenetic countdowns in heteromorph shells, N. Jb. Geol. Paläont. Abh. 190 (2/3): 237–265.Google Scholar
  150. Sheldon, R. W., 1965, Fossil communities with multi-modal size–frequency distributions, Nature 206 (4991): 1336–1338.Google Scholar
  151. Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26(2):133–145.Google Scholar
  152. Simoulin, E., 1945, Observations sur la croissance de la coquille chez quelques Stéphanocératides, Ann. Soc. Géol. Nord 65: 9–19.Google Scholar
  153. Smith, J. P., 1898, The development of Lytoceras and Phylloceras, Proc. Calif Acad. Sci. (Geol.) 1 (4): 129–161.Google Scholar
  154. Speden, I. G., 1970, The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 2, Systematics of the Bivalvia, Peabody Mus. Nat. Hist. Yale Univ. Bull. 33: 1–222.Google Scholar
  155. Stahl, W., and Jordan, R., 1969, General considerations on isotopic paleotemperature determinations and analyses on Jurassic ammonites, Earth Planet. Sci. Lett. 6: 173–178.Google Scholar
  156. Stevens, G. R., 1988, Giant ammonites: A review, in: Cephalopods—Present and Past ( J. Wied-mann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 141–166.Google Scholar
  157. Surlyk, F., 1972, Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous), K. Dan. Vidensk. Selsk. Biol. Skr. 19 (2): 1–57.Google Scholar
  158. Tanabe, K., 1975, Functional morphology of Otoscaphites puerculus (limbo), an Upper Cretaceous ammonite, Trans. Proc. Palaeontol. Soc. Jpn, New Ser. 99: 109–132.Google Scholar
  159. Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (limbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. Ser. D (Geol.) 23: 367–407.Google Scholar
  160. Tanabe, K., 1979, Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan, Palaeontology (Land.) 22 (3): 609–630.Google Scholar
  161. Tanabe, K., and Landman, N. H., Translocation of the soft body in Mesozoic ammonoids, in prep. Tanabe, T., Obata, I., and Futakami, H., 1981, Early shell morphology in some Upper Cretaceous heteromorph ammonites, Trans. Proc. Palaeontol. Soc. Jpn. New Ser. 124: 215–234.Google Scholar
  162. Tanabe, K., Landman, N. H., and Weitschat, W., 1993, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development, and evolution, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 57–84.Google Scholar
  163. Teisseyre, L., 1889, Über die systematische Bedeutung der sog. Parabeln der Perisphincten, N. Jb. Miner. Geol. PaMont. 6 (1): 570–643.Google Scholar
  164. Tevesz, M. J. S., and Carter, J. G., 1980, Environmental relationships of shell form and structure of unionacean bivalves, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 295–322.Google Scholar
  165. Thompson, D. W., 1917, On Growth and Form, Cambridge University Press, London.Google Scholar
  166. Tourtelot, H. A., and Rye, R. O., 1969, Distribution of oxygen and carbon isotopes in fossils of Late Cretaceous age, Western Interior region of North America, Geol. Soc. Am. Bull. 80: 1903–1922.Google Scholar
  167. Tozer, E. T., 1965, Latest Lower Triassic ammonoids from Ellesmere Island and northeastern British Columbia, Geol. Sun’. Can. Bull. 123.Google Scholar
  168. Tozer, E. T., 1991. Relationship between spines, parabolic nodes, rhythmic shell secretion and formation of septa in some Triassic ammonoids, in: The Ammonoidea: Evolution and Environmental Change, Systematics Association Symp. London Prog. Abstr., pp. 23–24.Google Scholar
  169. Trueman, A. E., 1941, The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. Lond. 96: 339–383.Google Scholar
  170. Van Heukelem, W. R,1978, Aging in lower animals, in: Biology of Aging (J. A. Behnke, C. E. Finch, and B. C. Moment, eds.), Plenum Press, New York, pp. 115–130.Google Scholar
  171. Vermeij, G. J., 1980, Gastropod shell growth rate, allometry, and adult size—environmental implications, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 379–394.Google Scholar
  172. Vermeij, G. J., 1993, A Natural History of Shells, Princeton University Press, Princeton.Google Scholar
  173. Waage, K. M., 1968, The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 1, stratigraphy and paleoenvironments, Peabody Mus. Nat. Hist. Yale Univ. Bull. 27: 1–175.Google Scholar
  174. Wähner, E, 1894, Beiträge zur Kenntniss der tieferen Zonen des unteren Lias in der nordöstlische Alpen, Beitr. Paläontol. Österr. Ungarns. Orients 9 (I–II): 1–54.Google Scholar
  175. Ward, P. D., 1982, The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology, Paleobiology 8: 426–433.Google Scholar
  176. Ward, P. D., 1985, Periodicity of chamber formation in chambered cephalopods: Evidence from Nautilus macromphalus and Nautilus pompilius, Paleobiology 11: 438–450.Google Scholar
  177. Ward, P. D., 1986, Rates and processes of compensatory buoyancy change in Nautilus macromphalus, Veliger 28: 356–368.Google Scholar
  178. Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, Boston.Google Scholar
  179. Ward, P. D., 1992, On Methuselah’s Trail, W. H. Freeman, New York.Google Scholar
  180. Ward, P. D., and Chamberlain, J. A., Jr., 1983, Radiographic observation of chamber formation in Nautilus pompilius, Nature (Lond.) 304: 57–59.Google Scholar
  181. Ward, P. D., and Greenwald, L., 1982, Chamber refilling in Nautilus, J. Mar. Biol. Assoc. U.K. 62: 469–475.Google Scholar
  182. Ward, P. D., Greenwald, L., and Magnier, Y., 1981, The chamber formation cycle in Nautilus macromphalus, Paleobiology 7 (4): 481–493.Google Scholar
  183. Weitschat, W., and Bandel, K., 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paläontol. Z. 65: 269–303.Google Scholar
  184. Weitschat, W., and Bandel, K., 1992, Formation and function of suspended organic cameral sheets in Triassic ammonoids: Reply, Paläontol. Z. 66: 443–444.Google Scholar
  185. Wells, M. J., 1983, Cephalopods do it differently, New Sci. 100: 332–338.Google Scholar
  186. Wells, M. J., and Wells, J., 1959, Hormonal control of sexual maturity in Octopus, J. Exp. Biol. 36: 1–33.Google Scholar
  187. Wells, M. J., and Wells, J., 1977, Cephalopoda: Octopoda, in: Reproduction of Marine Inverte-brates, Vol. IV ( A. C. Giese and J. S. Pearse, eds.), Academic Press, New York, pp. 291–336.Google Scholar
  188. Westermann, G. E. G., 1954, Monographie der Otoitidae (Ammonoidea), Geol. Jahrb. Beih. 15: 1–364.Google Scholar
  189. Westermann, G. E. G., 1958, The significance of septa and sutures in Jurassic ammonite systematics, Geol. Mag. 95 (6): 441–455.Google Scholar
  190. Westermann, G. E. G., 1971, Form, structure, and function of shell and siphuncle in coiled Mesozoic ammonoids, Life Sci. Contr. R. Ont. Mus. 78: 1–39.Google Scholar
  191. Westermann, G. E. G., 1975, Architecture and buoyancy of simple cephalopod phragmocones and remarks on ammonites, Paläontol. Z. 49: 221–234.Google Scholar
  192. Westermann, G. E. G., 1990, New developments in ecology of Jurassic–Cretaceous ammonoids, in: Atti del secondo convegno inernazionale, Fossili, Evoluzione, Ambiente, Pergola, 1987 ( G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tectnostampa, Ostra Vetere, Italy, pp. 459–478.Google Scholar
  193. Westermann, G. E. G., 1992, Formation and function of suspended organic cameral sheets in Triassic ammonoids—discussion, Paläontol. Z. 66 (3/4): 437–441.Google Scholar
  194. Whittaker, S. G., Kyser, T. K., and Caldwell, W. G. E., 1987, Paleoenvironmental geochemistry of the Clagett marine cyclothem in south-central Saskatchewan, Can. J. Earth Sci. 24: 967–984.Google Scholar
  195. Wiedmann, J., and Boletzky, S. v., 1982, Wachstum und Differenzierung des Schlups von Sepia officinalis unterkünstlichen Aufzuchtbedingungen—Grenzen der Anwendung im palökologischen Modell, N. Jb. Geol. Paläont. Abh. 164 (1/2): 118–133.Google Scholar
  196. Zaborski, P. M. P., 1986, Internal mould markings in a Cretaceous ammonite from Nigeria, Palaeontology 29: 725–738.Google Scholar
  197. Zakharov, Y. D., 1977, Ontogeny of ceratites of the genus Pinacoceras and developmental features of the suborder Pinacoceratina, Paleontol. J. 4: 445–451.Google Scholar
  198. Zell, H., Zell, I., and Winter, S., 1979, Das Gehäusewachstum der Ammonitengattung Amaltheus De Montfort während der frühontogenetischen Entwicklung, N. Jb. Geol. Paläont. Mh. 10: 631–640.Google Scholar
  199. Zuev, G. V., 1975, Physiological variation in female squids Symplectoteuthis pteropus (Steenstrup), Biol. Moyra 38: 55–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Hugo Bucher
    • 1
  • Neil H. Landman
    • 2
    • 3
  • Susan M. Klofak
    • 2
    • 3
  • Jean Guex
    • 4
  1. 1.URA CNRS 157, Centre des Sciences de la TerreUniversité de BourgogneDijonFrance
  2. 2.Department of InvertebratesAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.Department of BiologyCUNYNew YorkUSA
  4. 4.Institut de GéologieUniversité de Lausanne, BFSH-2LausanneSwitzerland

Personalised recommendations