Ammonoid Embryonic Development

  • Neil H. Landman
  • Kazushige Tanabe
  • Yasunari Shigeta
Part of the Topics in Geobiology book series (TGBI, volume 13)


Ammonoids retain a record of growth in their shells, and, therefore, material is readily available for studies of early ontogeny. Such studies were performed first in the mid-19th century and have been pursued with vigor ever since. Using optical and scanning electron microscopy, ammonoid workers have described the morphology of the early whorls and have attempted to reconstruct the sequence of early ontogenetic development and to identify the embryonic shell.


Growth Line Early Ontogeny Shell Wall Muscle Scar Prismatic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkad’yev. V. V., and Vavilov, M. N., 1984, The internal structure and ontogeny of the Late Anisian Beyrichitidae (Ammonoidea) of Central Siberia, Paleontol. J. 4: 61–72.Google Scholar
  2. Arkell, W. J., 1957, Introduction to Mesozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L, Mollusca 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 81–129.Google Scholar
  3. Arnold, J. M., and Williams-Arnold, L. D., 1977, Cephalopods: Decapoda, in: Reproduction of Marine Invertebrates, Vol. 4 ( A. C. Giese and J. S. Pearse, eds.), Academic Press, New York, pp. 243–284.CrossRefGoogle Scholar
  4. Arnold, J. M., Landman, N. H., and Mutvei, H., 1987, Development of the embryonic shell of Nautilus, in: Nautilus, The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 373–400.Google Scholar
  5. Babin, C., 1989, Les goniatites du Dévonien du Synclinorium Médian Armoricain et leur signification paléobiogéographique, Palaeontogr. Abt. A 206: 25–48.Google Scholar
  6. Bandel, K., 1975, Embryonalgehäuse karibischer Meso-und Neogastropoden (Mollusca), Akad. bliss. Lit. Mainz Abh. Math. Naturwiss. Kl. 1975 (1): 1–133.Google Scholar
  7. Bandel, K., 1982, Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken, Facies 7: 1–198.CrossRefGoogle Scholar
  8. Bandel, K., 1986, The ammonitella: A model of formation with the aid of the embryonic shell of archaeogastropods, Lethaia 19: 171–180.CrossRefGoogle Scholar
  9. Bandel, K., 1989, Cephalopod shell structure and general mechanisms of shell formation, in: Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Short Course in Geology, Vol. 5, Pt. II ( J. G. Carter, ed.), American Geophysical Union, Washington. DC. pp. 97–115.Google Scholar
  10. Bandel, K., 1991, Ontogenetic changes reflected in the morphology of the molluscan shell, in: Constructional Morphology and Evolution ( N. Schmidt-Kittler and K. Vogel, eds.), Springer-Verlag, Berlin, pp. 211–230.CrossRefGoogle Scholar
  11. Bandel, K., and Boletzky, S. v., 1979, A comparative study of the structure, development, and morphological relationships of chambered cephalopod shells, Veliger 21: 313–354.Google Scholar
  12. Bandel, K., Landman, N. H., and Waage, K. M., 1982, Microornament on early whorls of Mesozoic ammonites: Implications for early ontogeny, J. Paleontol. 56 (2): 386–391.Google Scholar
  13. Beecher, C. E., 1890, On the development of the shell in the genus Tornoceras Hyatt, Am. J. Sci. 60: 71–75.Google Scholar
  14. Bensaïd, M., 1974, Étude sur des goniatites à la limite du Dévonien moyen et supérieur du Sud Marocain, Notes Serv. Géol. Maroc 36 (264): 81–140.Google Scholar
  15. Berthold, T., and Engeser, T., 1987, Phylogenetic analysis and systematization of the Cephalopoda (Mollusca), Verh. Naturwiss. Ver. Hamb. N.F. 29: 187–220.Google Scholar
  16. Birkelund, T., 1979, The last Maastrichtian ammonites, in: Cretaceous—Tertiary boundary events ( T. Birkelund and R. G. Bromley, eds.), University of Copenhagen, Copenhagen, pp. 51–57.Google Scholar
  17. Birkelund, T., 1981, Ammonoid shell structure, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R Senior, eds.), Academic Press, London, pp. 177–214.Google Scholar
  18. Birkelund. T., and Hansen, H. J., 1968, Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites, Medd. Dan. Geol. Foren. 18: 71–78.Google Scholar
  19. Birkelund, T., and Hansen, H. J., 1974, Shell ultrastructures of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications, K. Dan. Vidensk. Selsk. Biol. Skr. 20 (6): 1–34.Google Scholar
  20. Blind, W., 1979, The early ontogenetic development of ammonoids by investigation of shell-structures, in: Symposium on Ammonoidea, Systematics Association York, England, Abstracts, p. 32.Google Scholar
  21. Blind, W., 1988, Über die primäre Anlage des Siphos bei ectocochleaten Cephalopoden, Palaeontogr. Abt. A 204: 67–93.Google Scholar
  22. Bogoslovskaya, M. F., 1959, The internal structure of certain Artinskian ammonoid shells, Paleontol. Zh. 1: 49–59.Google Scholar
  23. Bogoslovsky, B. I., 1969. Devonskie Ammonoidei. I. Agoniatity, Trans. Paleont. Inst. Akad. Nauk SSSR 124: 1–341.Google Scholar
  24. Böhmers, J. C. A., 1936, Bau und Struktur von Schale und Sipho bei permischen Ammonoidea, Dissertation, Drukkerij University, Amsterdam.Google Scholar
  25. Boletzky, S. v., 1974, The “larvae” of Cephalopoda: A review, Thalassic Jugosl. 10: 45–76.Google Scholar
  26. Boletzky, S. v., 1977, Post-hatching behaviour and mode of life in cephalopods, in: The Biology of Cephalopods, Symposia of the Zoological Society of London, No. 38 ( M. Nixon and j. B. Messenger, eds.). Academic Press, London, pp. 557–567.Google Scholar
  27. Boletzky, S. v., 1987a, Embryonic phase, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press. London, pp. 5–31.Google Scholar
  28. Boletzky, S. v., 1987b. Juvenile behavior, in: Cephalopod Life Cycles. Vol. II ( P. R. Boyle. ed.), Academic Press, London, pp. 45–60.Google Scholar
  29. Boletzky, S. v., 1988, Characteristics of cephalopod embryogenesis, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 167–179.Google Scholar
  30. Boletzky, S. v., 1992, Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda), Rev. Suisse Zool. 99: 755–770.Google Scholar
  31. Boletzky, S. v., 1993, Development and reproduction in the evolutionary biology of Cephalopoda, Geobios Mem. Spec. 15: 33–38.CrossRefGoogle Scholar
  32. Branco, W., 1879, Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden, Palaeontographica 26: 15–50.Google Scholar
  33. Branco, W., 1880, Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden. Palaeontographica 27: 17–81.Google Scholar
  34. Brown, A. P., 1891, On the young of Baculites compressus Say, Nautilus 5 (2): 19–21.Google Scholar
  35. Buckman, S. S., 1887–1907, A monograph of the ammonites of the Inferior Oolite Series, Palaeontogr. Soc. 40-61:1–456.Google Scholar
  36. Buckman, S. S., 1909, Yorkshire Type Ammonites, Vol. 1, No. 1, Wesley, London, pp. 1–12.Google Scholar
  37. Buckman, S. S., 1918, Jurassic chronology: I-Lias, Q. J. Geol. Soc. Lond. 73: 257–327.Google Scholar
  38. Callomon, J. H., 1963, Sexual dimorphism in Jurassic ammonites, Trans. Leicester Lit. Phil. Soc. 57: 21–56.Google Scholar
  39. Carlson, B. A., 1991, Nautilus hatches at Waikiki Aquarium, Chambered Nautilus Newsl. 63: 2–3.Google Scholar
  40. Clausen, C. D., 1969, Oberdevonische Cephalopoden aus dem Rheinischen Schiefergebirge, II Gephuroceratidae, Beloceratidae, Palaeontogr. Abt. A 132: 95–178.Google Scholar
  41. Crickmay, C. H., 1925, The discovery of the prosiphon in Cretaceous ammonites from California with remarks upon the function of the organ, Am. J. Sci. 9: 229–232.CrossRefGoogle Scholar
  42. Currie, E. D., 1942, Growth changes in the ammonite Promicroceras marstonense Spath, Proc. R. Soc. Edinb. [B] 61: 344–367.Google Scholar
  43. Currie, E. D., 1943, Growth stages in some species of Promicroceras, Geol. Mag. 80: 15–22.CrossRefGoogle Scholar
  44. Currie, E. D., 1944, Growth stages in some Jurassic ammonites, Trans. R. Soc. Edinb. 61 (6): 171–198.CrossRefGoogle Scholar
  45. Dauphin, Y., 1975, Anatomie de la protoconque et des tours initiaux de Beudanticeras beudanti (Brongniart) et Desmoceras latidorsatum (Michelin) (Desmoceratidae, Ammonitina)—Albien de Gourdon (Alpes-Maritimes). Ann. Paleontol. Invertebr. 61 (1): 3–16.Google Scholar
  46. Dauphin, Y., 1977, Anatomie de la protoconque et des tours initiaux de Uhligella walleranti Jacob (Desmoceratidae, Ammonitina)—Albien de Gourdon (Alpes-Martimes), Ann. Paleontol. Invertebr. 63 (2): 77–83.Google Scholar
  47. Doguzhaeva, L., and Mikhailova, I., 1982, The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonites, Lethaia 15: 55–65.CrossRefGoogle Scholar
  48. Dreyfuss, M., 1933, Découverte de nodules phosphatés à jeunes ammonites dans le Toarcien de Créveney (Haute-Saône), C. R. Somm. Seances Soc. Geol. Fr. 14: 224–226.Google Scholar
  49. Druschits, V. V., and Doguzhaeva, L. A., 1974, Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea), Paleontol. J. 8 (1): 37–48.Google Scholar
  50. Druschits, V. V., and Doguzhaeva, L. A., 1981, Ammonites Under the Electron Microscope, Moscow University Press, Moscow (in Russian).Google Scholar
  51. Druschits, V. V.. and Khiami, N., 1970, Structure of the septa, protoconch walls and initial whorls in Early Cretaceous ammonites, Paleontol. J. 4 (1): 26–38.Google Scholar
  52. Druschits, V. V., Doguzhaeva, L. A., and Mikhailova, I. A., 1977a, The structure of the ammonitella and the direct development of ammonites, Paleontol. J. 11 (2): 188–199.Google Scholar
  53. Druschits, V. V., Doguzhaeva, L. A., and Lominadze, T. A., 1977b, Internal structural features of the shell of Middle Callovian ammonites, Paleontol. J. 11 (3): 271–284.Google Scholar
  54. Druschits, V. V., Mikhailova, I. A., Kabanov, G. K., and Knorina, M. V., 1980, Morphogenesis of the Simbirskites group, Paleontol. J. 14 (1): 42–57.Google Scholar
  55. Engeser, T., 1990, Major events in cephalopod evolution, in: Major Evolutionary Radiations, Systematics Association Spec. Vol. 42 ( P. D. Taylor and G. P. Larwood, eds.), Clarendon Press, Oxford, pp. 119–138.Google Scholar
  56. Erben. H. K.. 1960, Primitive Ammonoidea aus dem Unterdevon Frankreichs und Deutschlands, N. lb. Geol. Paläont. Abh. 110 (1): 1–128.Google Scholar
  57. Erben, H. K., 1962, Über den Prosipho, die Prosutur und die Ontogenie der Ammonoidea. Paläontol. Z. 36: 99–108.Google Scholar
  58. Erben, H. K., 1964, Die Evolution der ältesten Ammonoidea, N. Jb. Geol. Paläont. Abh. 120 (2): 107–212.Google Scholar
  59. Erben, H. K., 1966, Über den Ursprung der Ammonoidea, Biol. Rev. 41: 641–658.PubMedCrossRefGoogle Scholar
  60. Erben, H. K., Flajs, G., and Siehl, A., 1968, Ammonoids: Early ontogeny of ultra-microscopical shell structure, Nature 219: 396–398.PubMedCrossRefGoogle Scholar
  61. Erben, H. K., Flajs, G., and Siehl, A., 1969, Die frühontogenetische Entwicklung der Schallenstruktur ectocochleaten Cephalopoden, Palaeontogr. Abt. A 132: 1–54.Google Scholar
  62. Göddertz, B., 1989, Unterdevonische hercynische Goniatiten aus Deutschland, Frankreich und der Türkei, Palaeontogr. Abt. A 208: 61–89.Google Scholar
  63. Grandjean, F., 1910, Le siphon des ammonites et des belémnites, Soc. Geol. Fr. Bull. Ser. 410: 496–519.Google Scholar
  64. Hecht, G., 1991. Paleoecology and paleobiology of bactritoid cephalopods from the Pennsylvanian (Missourian) Eudora Shale (Kansas) and Wolf Mountain Shale, MS Dissertation, Ohio University, Athens, OH.Google Scholar
  65. Hecht, G. D., and Mapes, R. H., 1990, Paleobiology of bactritoid cephalopods from the Pennsylvanian (Missourian) of Texas and Kansas, Geol. Soc. Am. Abstr. Programs 22 (7): A221.Google Scholar
  66. Hewitt, R. A., 1985, Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina. N. Jb. Geol. Paläont. AM. 170: 273–290.Google Scholar
  67. Hewitt, R. A., 1988, Significance of early septal ontogeny in ammonoids and other ectocochliates, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 207–214.Google Scholar
  68. Hewitt, R. A., 1993. Relation of shell strength to evolution in the Ammonoidea, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Special Volume 47 ( M.R. House, ed.), Clarendon Press, Oxford, pp. 35–56.Google Scholar
  69. Hirano, H., 1975, Ontogenetic study of Late Cretaceous Gaudryceras tenuiliratum, Mem. Fac. Sci. Kyushu Univ. Ser. D. Geol. 22: 165–192.Google Scholar
  70. House, M. R., 1965, A study in the Tornoceratidae: The succession of Tornoceras and related genera in the North American Devonian, Phil. Trans. R. Soc. Lond. (B] 250 (763): 79–130.CrossRefGoogle Scholar
  71. House, M. R., 1985, The ammonoid time-scale and ammonoid evolution, in: The Chronology of the Geological Record, The Geological Society, Memoir 10 ( N. J. Snelling, ed.), Blackwell Scientific Publications, Oxford, pp. 273–283.Google Scholar
  72. Hyatt, A., 1866, On the agreement between the different periods in the life of the individual shell and the collective life of the tetrabranchiate cephalopods, Proc. Bost. Soc. Nat. Hist. 10: 302–303.Google Scholar
  73. Hyatt, A., 1872, Fossil cephalopods of the Museum of Comparative Zoology: Embryology, Bull. Mus. Comp. Zool. 3: 59–111.Google Scholar
  74. Hyatt, A., 1883, Fossil cephalopods in the Museum of Comparative Zoology, Am. Assoc. Adv. Sci. Pr. 32: 323–361.Google Scholar
  75. Hyatt, A., 1889, Genesis of the Arietidae, Smithson. Contrib. Knowledge 26 (673): 1–238.Google Scholar
  76. Hyatt. A., 1894, Phylogeny of an acquired characteristic, Proc. Am. Philos. Soc. 32 (143): 349–647.Google Scholar
  77. Ivanov, A. N., 1971, On the problem of periodicity of the formation of septa in ammonoid shells and in that of other cephalopods. Uch. Zap. Yarslv. Pedagog. Inst. Geol. Paleontol. 87: 127–130Google Scholar
  78. Jablonski, D., and Lutz, R. A., 1980, Larval shell morphology: Ecology and paleoecological applications, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 323–377.Google Scholar
  79. Jacobs, D. K., and Landman, N. H., 1993, Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.Google Scholar
  80. Kakabadzé, M. V., and Sharikadzé, M. Z., 1993, On the mode of life of heteromorph ammonites (heterocone, ancylocone, ptychocone), Geobios Mém. Spec. 15: 209–215.CrossRefGoogle Scholar
  81. Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17.Google Scholar
  82. Kulicki, C., 1974, Remarks on the embryogeny and postembryonal development of ammonites, Acta Palaeontol. Pol. 19: 201–224.Google Scholar
  83. Kulicki, C., 1979, The ammonite shell: Its structure, development and biological significance, Palaeontol. Pol. 39: 97–142.Google Scholar
  84. Kulicki, C., 1989, Archaeogastropod model of mineralization of ammonitella shell, in: Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends, Short Course in Geology, Vol. 5, Pt. II ( J. G. Carter, ed.), American Geophysical Union, Washington, DC, p. 324.Google Scholar
  85. Kulicki, C., and Doguzhaeva, L. A., 1994, Development and calcification of the ammonitella shell, Acta Palaeontol. Pol. 39: 17–44.Google Scholar
  86. Kulicki, C., and Wierzbowski, A., 1983. The Jurassic juvenile ammonites of the Jagua Formation, Cuba, Acta Palaeontol. Pol. 28 (3,4): 369–384.Google Scholar
  87. Landman, N. H., 1982, Embryonic shells of Baculites, J. Paleontol. 56 (5): 1235–1241.Google Scholar
  88. Landman, N. H., 1985, Preserved ammonitellas of Scaphites (Ammonoidea, Ancyloceratina), Am. Mus. Novit. 2815: 1–10.Google Scholar
  89. Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: Systematics. developmental patterns. and life history. Bull. Am. Mus. Nat. Hist. 185 (2): 118–241.Google Scholar
  90. Landman, N. H.. 1988. Early ontogeny of Mesozoic ammonites and nautilids, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 215–228.Google Scholar
  91. Landman, N. H., and Bandel, K., 1985, Internal structures in the early whorls of Mesozoic ammonites. Am. Mus. Novit. 2823: 1–21.Google Scholar
  92. Landman, N. H., and Klofak, S. M., in prep., Size frequency studies in Late Cretaceous ammonoids: Evidence for rate of growth.Google Scholar
  93. Landman, N. H., and Waage, K. M., 1982, Terminology of structures in embryonic shells of Mesozoic ammonites, J. Paleontol. 56 (5): 1293–1295.Google Scholar
  94. Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming, Bull. Am. Mus. Nat. Hist. 215: 1–257.Google Scholar
  95. Lehmann, U., 1966, Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe, Paläontol. Z. 40: 26–55.Google Scholar
  96. Lehmann, U., 1981, The Ammonites: Their Life and Their World, Cambridge University Press, Cambridge.Google Scholar
  97. Lehmann, U., 1990, Ammonoideen—Leben zwischen Skylla und Charybdis, 2nd ed., Ferdinand Enke Verlag, Stuttgart.Google Scholar
  98. Makowski, H., 1971, Some remarks on the ontogenetic development and sexual dimorphism in the Ammonoidea, Acta Geol. Pol. 21 (3): 321–340.Google Scholar
  99. Mangold, K., 1987, Reproduction, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, New York, pp. 157–200.Google Scholar
  100. Mapes, R. H., 1979, Carboniferous and Permian Bactritoidea (Cephalopoda) in North America, Univ. Kans. Paleontol. Contrib. Artic. 64: 1–75.Google Scholar
  101. Mapes, R. H., Tanabe, K., Landman, N. H., and Faulkner, C. J., In prep., Ammonoid cephalopod egg clusters from the Carboniferous of Kansas.Google Scholar
  102. Miller, A. K., 1938, Devonian ammonoids of America, Geol. Soc. Am. Spec. Pap. 14: 1–262.CrossRefGoogle Scholar
  103. Miller, A. K., and Unklesbay, A. G., 1943, The siphuncle of Late Paleozoic ammonoids, J. Paleontol. 17: 1–25.Google Scholar
  104. Miller, A. K., Furnish, W. M., and Schindewolf, O. H., 1957. Paleozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L, Mollusco 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 11–79.Google Scholar
  105. Morton, N.. 1988, Segregation and migration patterns in some Graphoceras populations (Middle Jurassic). in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullman, eds.). Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 377–385.Google Scholar
  106. Müller, A. H., 1969. Ammoniten mit “Eierbeutel” und die Frage nach dem Sexualdimorphismus der Ceratiten (Cephalopoda), Monatsber. Dtsch. Akad. Wiss. Berl. 11 (5/6): 411–420.Google Scholar
  107. Munier-Chalmas, E.. 1873, Sur le développement du phragmostracum des Céphalopodes et sur les rapports zoologiques des Ammonites avec les Spirules, C. R. Acad. Sci. 77 (1).Google Scholar
  108. Naef, A., 1922, Die fossilen Tintenfische—eine Paläozoologische Monographie, G. Fischer, Jena.Google Scholar
  109. Obata. I., Tanabe, K., and Futakami. H.. 1979, Ontogeny and variation in Subprionocyclus neptuni, an Upper Cretaceous collignoniceratid ammonite, Bull. Natl. Sci. Mus. Ser. C (Geol.) 5 (2): 51–88.Google Scholar
  110. O’Dor, R. K., 1983, Illexillecebrosus. in: Cephalopod Life Cycles, Vol. I (P. R. Boyle, ed.), Academic Press, New York, pp. 175–199.Google Scholar
  111. Ohtsuka, Y., 1986, Early internal shell microstructure of some Mesozoic Ammonoidea: Implications for higher taxonomy, Trans. Proc. Palaeontol. Soc. Jpn. N.S. 141: 275–288.Google Scholar
  112. Owen, C. B., 1878, On the relative positions to their constructors of the chambered shells of cephalopods, Proc. Zool. Soc. Lond. 1878: 955–975.Google Scholar
  113. Palframan, D. F. B., 1967a, Modes of early shell growth in the ammonite Promicroceras marstonense Spath, Nature 216: 1128–1130.CrossRefGoogle Scholar
  114. Palframan, D. F. B., 1967b. Variation and ontogeny of some Oxford Clay ammonites: Distichoceras bicostatum (Stahl) and Horioceras bougieri (D’Orbigny), from England, Palaeontology (Lond.) 10 (1): 60–94.Google Scholar
  115. Ramsbottom, W. H. C., 1981, Eustatic control in Carboniferous ammonoid biostratigraphy, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 369–388.Google Scholar
  116. Ruzhentsev, V. E., 1974, Superorder Ammonoidea, General Section, in: Fundamentals of Paleontology, Vol. 5, Mollusca–Cephalopoda ( V. E. Ruzhentsev, ed.), Keter Press, Jerusalem, pp. 371–511.Google Scholar
  117. Ruzhentsev, V. E., and Shimansky, V. N., 1954, Nizhnepermskie svernutye i sognutie nautiloidei yuzhnogo Urala [Coiled and curved Lower Permian nautiloids of the southern Urals], Trans. Paleontol. Inst. Akad. Nauk SSSR 50: 1–152.Google Scholar
  118. Saunders, W. B., and Ward, P. D., 1987, Ecology, distribution, and population characteristics of Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 137–162.Google Scholar
  119. Schindewolf, O. H., 1928, Zur Terminologie der Lobenlinie, Paläontol. Z. 9: 181–186.Google Scholar
  120. Schindewolf. O. H., 1929, Vergleichende Studien zur Phylogenie, Morphogenie und Terminologie der Ammoneenlobenlinie, Abh. Preuss. Geol. Landesanst. N.F. 115: 1–102.Google Scholar
  121. Schindewolf, O. H., 1933, Vergleichende Morphologie und Phylogenie der Anfangskammern tetrabranchiater Cephalopoden, Abh. Preuss. Geol. Landesanst. N.E 148: 1–115.Google Scholar
  122. Schindewolf, O. H., 1951, Zur Morphogenie und Terminologie der Ammoneen-Lobenlinie, Paläontol. Z. 25: 11–34.Google Scholar
  123. Schindewolf, O. H., 1954, On development, evolution and terminology of ammonoid suture line, Bull. Mus. Comp. Zool. 112 (3): 217–237.Google Scholar
  124. Schindewolf, O. H., 1959, Adolescent cephalopods from the Exshaw Formation of Alberta, J. Paleontol. 33 (6): 971–976.Google Scholar
  125. Shigeta, Y., 1989, Systematics of the ammonite genus Tetragonites from the Upper Cretaceous of Hokkaido, Trans. Proc. Paleontol. Soc. Jpn. N.S. 156: 319–342.Google Scholar
  126. Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26: 133–145.CrossRefGoogle Scholar
  127. Shimansky, V. N., 1954, Pryamye nautiloidei i baktritoidei sakmarskogo i artinskogo yarusov Yuzhnogo Urala [Straight nautiloids and bactritoids from the Sakmarian and Artinskian stages of the southern Urals], Trans. Paleontol. Inst. Akad. Nauk SSSR 44: 1–156.Google Scholar
  128. Shul’ga-Nesterenko, M., 1926, Nouvelles données sur l’organisation intérieure des conques des ammonites de l’étage d’Artinsk, Bull. Soc. Nat. Moscou Sec. Géol. 2 (34): 81–99.Google Scholar
  129. Silberling, N. J., and Nichols, K. M., 1982, Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada, U.S. Geol. Surv. Prof Pap. 1207: 1–77.Google Scholar
  130. Smith, J. P., 1898, The development of Lytoceras and Phylloceras, Proc. Calif. A, cad. Sci. (Geol.) 1 (4): 129–160.Google Scholar
  131. Smith, J. P., 1901, The larval coil of Baculites, Am. Nat. 35 (409): 39–49.CrossRefGoogle Scholar
  132. Smith, J. P., 1914, Acceleration of development in fossil Cephalopoda, Stanford Univ. Publ. Univ. Ser. 1914: 1–30.Google Scholar
  133. Spath, C. F., 1933, The evolution of the Cephalopoda, Biot. Rev. 8: 418–462.CrossRefGoogle Scholar
  134. Sturani, C., 1971, Ammonites and stratigraphy of the “Poseidonia Alpina” beds of the Venetian Alps, Mem. Ist. Geol. Mineral. Univ. Padova 28: 1–190.Google Scholar
  135. Tanabe, K., 1975, Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite, Trans. Proc. Palaeontol. Soc. Jpn. N.S. 99: 109–132.Google Scholar
  136. Tanabe, K., 1977a, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. Ser. D. Geol. 23: 367–407.Google Scholar
  137. Tanabe, K., 1977b, Mid-Cretaceous scaphitid ammonites from Hokkaido, Palaeontol. Soc. Jpn. Spec. Pap. 21: 11–22.Google Scholar
  138. Tanabe, K., 1989, Endocochliate embryo model in the Mesozoic Ammonitida, Hist. Biot. 2: 183–196.CrossRefGoogle Scholar
  139. Tanabe, K., and Ohtsuka, Y., 1985, Ammonoid early internal shell structure: Its bearing on early life history, Paleobiology 11 (3): 310–322.Google Scholar
  140. Tanabe, K., Obata, I., Fukuda, Y., Futakami, M., 1979, Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy, Bull. Natl. Sci. Mus. Ser. C (Geol.) 5 (4): 155–176.Google Scholar
  141. Tanabe, K., Fukuda, Y., and Obata, I., 1980, Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites, Bull. Natl. Sci. Mus. Ser. C (Geol.) 6: 9–26.Google Scholar
  142. Tanabe, K., Obata, I., and Futakami, M., 1981, Early shell morphology in some Upper Cretaceous heteromorph ammonites, Trans. Proc. Palaeontol. Soc. Jpn. N.S. 124: 215–234.Google Scholar
  143. Tanabe, K., Landman, N. H., Mapes, R. H., and Faulkner, C. J., 1993, Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas, U.S.A.—Implications for ammonoid embryology, Lethaia 26: 215–224.CrossRefGoogle Scholar
  144. Tanabe, K., Landman N. H., and Mapes, R. H., 1994, Early shell features of some Late Paleozoic ammonoids and their systematic implications, Trans. Proc. Palaeontol. Soc. Jpn. N.S. 173: 383–400.Google Scholar
  145. Tanabe, K., Shigeta, Y.. and Mapes. R. H.. 1995, Early life history of Carboniferous ammonoids inferred from analysis of fossil assemblages and shell hydrostatics, Palaios 10: 80–86.CrossRefGoogle Scholar
  146. Trueman, A. E., 1941, The ammonite body chamber with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. Lond. 96: 339–383.Google Scholar
  147. Vavilov, M. N., and Alekseyev, S. N., 1979, Ontogenetic development and internal structure of the Middle Triassic genus Aristoptychites, Paleontol. J. 13 (3): 312–318.Google Scholar
  148. Vecchione, M., 1987, Juvenile ecology, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, London, pp. 61–84.Google Scholar
  149. Vermeij, G. J., 1978, Biogeography and Adaptation, Harvard University Press, Cambridge, MA.Google Scholar
  150. Ward, P. D., and Bandel, K., 1987, Life history strategies in fossil cephalopods, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, London, pp. 329–350.Google Scholar
  151. Weitschat, W., and Bendel, K., 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paläontol. Z. 65: 269–303.Google Scholar
  152. Wells, M. J., and Wells, J., 1977, Cephalopoda: Octopoda, in: Reproduction of Marine Invertebrates, Vol. 4 ( A. C. Geise and J. S. Pearse, eds.), Academic Press, New York, pp. 291–330.CrossRefGoogle Scholar
  153. Westermann, G. E. G., 1954, Monographie der Otoitidae (Ammonoidea), Geol. Jahrb. Beih. 15: 1–364.Google Scholar
  154. Westermann, G. E. G., 1990, New developments in ecology of Jurassic–Cretaceous ammonoids, in: Atti del secondo convegno internazionale, Fossili, Evoluzione, Ambiente, Pergola, 1987 ( G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tecnostampa, Osta Vetere, Italy, pp. 459–478.Google Scholar
  155. Westermann, G. E. G., 1993, On alleged negative buoyancy of ammonoids, Lethaia 26: 246.CrossRefGoogle Scholar
  156. Wetzel, W., 1959, Über Ammoniten-Larven, N. Jb. Geol. Paläont. Abh. 107 (2): 240–252.Google Scholar
  157. Wiedmann, J., 1973, Ammoniten–Nuklei aus Schlaemmproben der nordalpinen Obertrias—ihre stammesgeschichtliche und stratigraphische Bedeutung, Mitt. Ges. Geol. Bergbaustud. 21: 521–616.Google Scholar
  158. Wiedmann, J., and Kullmann, J., 1981, Ammonoid sutures in ontogeny and phylogeny, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press. New York, pp. 215–256.Google Scholar
  159. Wissner, U. E. G., and Norris, A. W., 1991, Middle Devonian goniatites from the Dunedin and Besa River formations of northeastern British Columbia. Geol. Surv. Can. Bull. 412: 45–79.Google Scholar
  160. Zakharov, Y. D., 1971. Some features of the development of the hydrostatic apparatus in early Mesozoic ammonoids, Paleontol. J. 5 /11: 24–33.Google Scholar
  161. Zakharov, Y. D., 1972, Formation of the caecum and prosiphon in ammonoids, Paleontol. J. 6 (2): 201–206.Google Scholar
  162. Zakharov, Y. D., 1974, New data on internal shell structure in Carboniferous, Triassic and Cretaceous ammonoids, Paleontol. J. 8 (1): 25–36.Google Scholar
  163. Zakharov, Y. D., 1989. New data on biomineralization of the Ammonoidea, in: Skeletal Biomineralization Patterns, Processes, and Evolutionary Trends, Short Course in Geology, Vol. 5, Pt. II ( J. G. Carter, ed.), American Geophysical Union, Washington, DC, p. 325.Google Scholar
  164. Zell, H., Zell, I., and Winter, S., 1979, Das Gehäusewachstum der Ammonitengattung Amaltheus De Montfort während der frühontogentischen Entwicklung, N. Jb. Geol. Paläont. Mh. 10: 631–640.Google Scholar
  165. Ziegler, B., 1962, Die Ammoniten-Gattung Aulacostephanus im Oberjura (Taxionomie, Stratigraphie, Biology), Palaeontogr. Abt. A 119: 1–172.Google Scholar
  166. Zuev, G. V., and Nesis, K. N. (eds.), 1971, Squids (Biology and Fishery), Pishchevaya Promyshlennest. Moscow (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Neil H. Landman
    • 1
  • Kazushige Tanabe
    • 2
  • Yasunari Shigeta
    • 3
  1. 1.Department of InvertebratesAmerican Museum of Natural HistoryNew YorkUSA
  2. 2.Geological InstituteUniversity of TokyoTokyo 113Japan
  3. 3.Department of PaleontologyNational Science MuseumTokyo 160Japan

Personalised recommendations