Inhibitory Effects of Endogenous Tetrahydroisoquinolines on Mitochondrial Respiration in Mouse Brain

  • K. Suzuki
  • Y. Mizuno
  • M. Naoi
  • T. Nagatsu
  • M. Yoshida
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


Pathogenesis of Parkinson’s disease has not been well elucidated yet. However, some hypotheses have been advocated. Mitochondrial abnormalities,1,2,3,4,5,6 and changes of iron and free radicals7,8 have been reported. The mechanism of nigrostriatal degeneration in MPTP-induced parkinsonism appears to be due to the inhibition of mitochondrial respiration by MPP+. 9,10,11,12 Chronic exposure to an unknown MPTP-like endogenous neurotoxin has been postulated as a possible etiology of Parkinson’s disease. 1,2,3,4-Tetrahydroisoquinoline (TIQ) has emerged as one of such toxins.13 We have previously reported the effects of TIQ14,15,16,17 and TIQ-related compounds18 on mitochondrial respiration. In the present study, we report the inhibitory effect of dopamine-derived endogenous tetrahydroisoquinolines against mitochondrial respiration.


Tyrosine Hydroxylase Mouse Brain Mitochondrial Respiration Inhibitory Potency Electron Transport System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Schapira, J.M. Cooper, D. Dexter, P. Jenner, J.B. Clark and C.D. Marsden, Mitochondria) complex I deficiency in Parkinson’s disease, Lancet 1: 1269 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    Y. Mizuno, K. Suzuki and S. Ohta, Postmortem changes in mitochondria) respiratory enzymes in brain and a preliminary observation in Parkinson’s disease, J. Neurol. Sci. 96: 49 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Mizuno, S. Ohta, M. Tanaka, S. Takamiya, K. Suzuki, T. Sato, H. Oya, T. Ozawa and Y. Kagawa, Deficiencies in Complex I subunits of the respiratory chain in Parkinson’s disPACe, Biochem. Biophys. Res. Commun. 163: 1450 (1989).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Hattori, M. Tanaka, T. Ozawa and Y. Mizuno, Immunohistochemical studies on Complex I, II, III, and IV of mitochondria in Parkinson’s disease, Ann. Neurol. 30: 563 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    S. Ikebe, M. Tanaka, K. Ohno, W. Sato, K. Hattori, T. Kondo, Y. Mizuno and T. Ozawa, Increase of deleted mitochondria) DNA in the striatum in Parkinson’s disease and senescence, Biochem. Biophys. Res. Commun. 170: 1044 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Ikebe, N. Hattori, Y. Mizuno, M. Tanaka and T. Ozawa, Point mutations of mitochondria) DNA in Parkinson’s disease, Mov. Disorder 7 (Supple 1): 71 (1992).CrossRefGoogle Scholar
  7. 7.
    M.B.H. Youdim, D. Ben-Shachar and P. Riederer, Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron-and melanin-induced neurodegeneration? Acta Neurol. Scand. 126: 47 (1989).CrossRefGoogle Scholar
  8. 8.
    D.T. Dexter, A. Carayon, F. Javoy-Agid, Y. Agid, F. R. Wells, S.E. Daniel, A.J. Lees, P. Jenner and C.D. Marsden, Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia, Brain 114: 1953 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Mizuno, T. Saitoh and N. Sone, Inhibition mitochondria) NADH-ubiquinone oxidoreductase activity by 1-methyl-4-phenylpyridinium ion, Biochem. Biophys. Res. Commun. 143: 294 (1987).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Mizuno, N. Sone and T. Saitoh, Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine and 1methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain, J. Neurochem. 48: 1787 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Mizuno, N. Sone, K. Suzuki and T. Saitoh, Studies on the toxicity of 1-methyl-4-phenylpyridinium ion (MPP’) against mitochondria of mouse brain, J. Neurol. Sci. 86: 97 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Mizuno, K. Suzuki, N. Sone and T. Saitoh, Inhibition of mitochondria) respiration by 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mouse brain in vivo, Neurosci. Leu. 91: 349 (1988).CrossRefGoogle Scholar
  13. 13.
    T. Nagatsu and Y. Hirata, Inhibition of the tyrosine hydroxylase system by MPTP, 1- methyl-4phenylpyridinium ion (MPP+) and the structurally related compounds in vitro and in vivo, Eur. Neurol. 26 (suppl. 1): 11 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Suzuki, Y. Mizuno and M. Yoshida, Inhibition of mitochondria) NADH-ubiquinone oxidoreductase activity and ATP synthesis by tetrahydroisoquinoline, Neurosci. Leu. 86: 105 (1988).CrossRefGoogle Scholar
  15. 15.
    K. Suzuki, Y. Mizuno and M. Yoshida, Selective inhibition of complex I of the brain electron transport system by tetrahydroisoquinoline, Biochem. Biophys. Res. Commun. 162: 1541 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Suzuki, Y. Mizuno and M. Yoshida, Inhibition of mitochondria) respiration by 1,2,3,4tetrahydroisoquinoline-like endogenous alkaloids in mouse brain, Neurochem. Res. 15: 705 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Suzuki, Y. Mizuno and M. Yoshida, Effects of tetrahydroisoquinoline on mitochondrial respiration, in: “Basic, Clinical, and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases”, T. Nagatsu et al. ed., Plenum Press, New York Vol. 1, p. 309, (1990).Google Scholar
  18. 18.
    K. Suzuki, Y. Mizuno, Y. Yamauchi, T. Nagatsu and M. Yoshida, Selective inhibition of complex I by N-methylisoquinolinium ion and N-methyl-1,2,3,4-tetrahydroisoquino-line in isolated mitochondria prepared from mouse brain, J. Neurol. Sci. 109: 219 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Niwa, N. Takeda, N. Kaneda, Y. Hashizume and T. Nagatsu, Presence of tetrahydroisoquinoline and 2-methyl-tetrahydroisoquinoline in parkinsonian and human brains, Biochem. Biophys. Res. Commun. 144: 1084 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Ohta, M. Kohno, Y. Makino, O. Tachikawa and M. Hirobe, Tetrahydroisoquinoline and 1-methyltetrahydroisoquinoline are present in the human brain: relation to Parkinson’s disease, Biomed. Res. 8: 453 (1987).Google Scholar
  21. 21.
    Y. Makin, S. Ohta, O. Tachikawa and M. Hirobe, Presence of tetrahydroisoquinoline and 1-methyltetrahydroisoquinoline in foods: compounds related to Parkinson’s disease, Life Sci. 43: 373 (1988).CrossRefGoogle Scholar
  22. 22.
    T. Nagatsu and M. Yoshida, An endogenous substance of the brain, tetrahydroisoquino-line, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions, Neuro. Sci. Lett. 87: 178 (1988).CrossRefGoogle Scholar
  23. 23.
    T. Niwa, N. Takeda, A. Tatematsu, S. Matsumura, M. Yoshida and T. Nagatsu, Migration of tetrahydroisoquinoline, a possible parkinsonian neurotoxin, into monkey brain from blood is proved by gas chromatography-mass spectrometry, J. Chromatogr. 452: 85 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Naoi, S. Matsumura, T. Takahashi and T. Nagatsu, A N-methyl-transferase in human brain catalyses N-methylation of 1,2,3,4-tetrahydroisoquinoline, a precursor of a dopaminergic neurotoxin, N-methylisoquinolinium ion, Biochem. Biophys. Res. Commun. 161: 1213 (1989).PubMedCrossRefGoogle Scholar
  25. 25.
    M. Naoi, S. Matsuura, H. Parvez, T. Takahashi, Y. Hirata, M. Minami and T. Nagatsu, Oxidation of N-methyl-1,2,3,4-tetrahydroisoquinolineinto the N-methylisoquino-linium ion by monoamine oxidase, J. Neurochem. 52: 653 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    P. Dostert, M.S. Benedetti and G. Dordain, Tetrahydroisoquinoline alkaloids in neurodegenerative disorders - influence of drug treatment, in: “Basic, Clinical, and Therapeutic Aspects of Alzheimer’s and Parkinson’s Diseases”, Vol. 1, p. 247, T. Nagatsu et al. ed., Plenum Press, New York (1990).Google Scholar
  27. 27.
    W. Maruyama, D. Nakahara, M. Ota, T. Takahashi, A. Takahashi, T. Nagatsu and M. Naoi, Nmethylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study, J. Neurochem. 59:395 (1992).Google Scholar
  28. 28.
    T. Niwa, N. Takeda, H. Yoshizumi, A. Tatematsu, M. Yoshida, P. Dostert, M. Naoi and T. Nagatsu, Presence of 2-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolineand 1,2-dimethyl-6,7dihydroxy-1,2,3,4-tetrahydroisoquinoline, novel endogenous amines, in parkinsonian and normal human brains, Biochem. Biophys. Res. Commun. 177: 603 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • K. Suzuki
    • 1
    • 2
  • Y. Mizuno
    • 3
  • M. Naoi
    • 4
  • T. Nagatsu
    • 5
  • M. Yoshida
    • 2
  1. 1.Department of Internal MedicinePrefectural Tajima HospitalFukushimaJapan
  2. 2.Department of NeurologyJichi Medical SchoolTochigiJapan
  3. 3.Department of NeurologyJuntendo University School of MedicineTokyoJapan
  4. 4.Department of BiosciencesNagoya Institute of TechnologyAichiJapan
  5. 5.Department of NeurochemistryFujita Health UniversityAichiJapan

Personalised recommendations