Metabolic Bioactivation of Endogenous Isoquinolines as Dopaminergic Neurotoxins to Elicit Parkinson’s Disease

  • Makoto Naoi
  • Wakako Maruyama
  • Philippe Dostert
  • Daiichiro Nakahara
  • Tsutomu Takahashi
  • Toshiharu Nagatsu
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

After the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), endogenous and exogenous compounds have been intensively studied as pathogenic neurotoxins to elicit Parkinson’s disease (PD). The studies on animal PD models with MPTP reveal common and basic characteristics of the dopaminergic neurotoxins. MPTP is transported into the brain through the blood-brain-barrier and is oxidized into a more potent neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) by type B monoamine oxidase [monoamine: oxygen oxidoreductase (deaminating), EC 1.4.3.4, MAO]. The oxidation of MPTP is essential for the selective uptake and accumulation in dopamine neurons. The inhibition of oxidative phosphorylation and formation of active oxygen species are considered to cause the cell death of dopamine neurons in the nigro-striatum. Using such characteristics as markers, neurotoxin candidates have been screened among the dopamine metabolites and the related compounds. In the human brain, 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines (DHTIQs) and 1,2,3,4-tetrahydroisoquinolines (TIQs) have been identified as monoamine-derived isoquinolines. One of them, 1-methyl-DHTIQ (salsolinol, Sal) is well known to occur in humans (Sandler et al., 1973; Barker et al., 1981), and it is thought to result from condensation of dopamine with pyruvic acid, followed by decarboxylation and reduction (Dostert et al., 1990). The last reaction is probably enzymatic, but has not been well characterized, while there is evidence that the decarboxylation can occur non-enzymatically. This biosynthesis pathway produces (R)salsolinol [(R)Sal], which is detected in healthy subjects (Strolin Benedetti et al., 1989). Another pathway is the non-enzymatic Pictet-Spengler reaction of dopamine with an aldehyde, yielding both (R)- and (S)Sal. In addition, (S)Sal is found in the urine (Strolin Benedette et al., 1989), and of patients treated with L-DOPA (Dostert et al., 1989). On the one hand, TIQs without catechol structure are found in food and transported into the brain, or they are synthesized from β-phenethylamine. On the other hand, 1,2,3,4-tetrahydroiso-quinoline (TIQ) and 2-methyl-tetrahydroquinoline (Niwa et al., 1987) and 1-methyl-TIQ (Ohta et al., 1987) were found to occur in the human brain. TIQ was reported to induce parkinsonism in monkeys (Nagatsu and Yoshida, 1988), but the effects on dopamine neurons are transitory. The search continues for more potent neurotoxins.

Keywords

Tyrosine Hydroxylase Monoamine Oxidase Dopamine Neuron Pyruvic Acid Normal Human Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, S.A., Monti, J.A., Tolbert, L.C., Brown, G.B., and Christian, S.T., 1981, Gas chromatography/ mass spectrometric evidence for the identification of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolineas a normal constituent of rat brain, Biochem. Pharmacol. 30: 46–2468.Google Scholar
  2. Dostert, P., Strolin-Benedetti, M., Dordain, G., and Vernay, D, 1989, Enatiometric composition of urinary salsolinol in parkinsonian patients after Madopar, J. Neural. Transm. [P-D Sect] 1: 269–278.CrossRefGoogle Scholar
  3. Dostert, P., Strolin-Benedetti, M., Bellotti, V., Allievi, C., and Dordain, G., 1990, Biosynthesis of salsolinol, a tetrahydroisoquinoline alkaloid, in healthy subjects. J. Neural. Transm. 81: 215–223.CrossRefGoogle Scholar
  4. Maruyama, W., Nakahara, D., Ota, M., Takahashi, T., Takahashi, A., Nagatsu, T., and Naoi, M., 1992, N-Methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains; in vivo microdialysis study, J. Neurochem. 59: 395–400.PubMedCrossRefGoogle Scholar
  5. Maruyama, W., Nakahara, D., Dostert, P., Hashiguchi, H., Ohta, S., Hirobe, M., Takahashi, A., Nagatsu, T., and Naoi, M., 1993a, Selective re1Pgce of serotonin by endogenous alkaloids, 1-methyl-6,7dihydroxy-1,2,3,4-tetrahydroisoquinolines, (R)- and (S)salsolinol, in the rat striatum: in vivo microdialysis study. Neurosci Lett 149: 115–118.PubMedCrossRefGoogle Scholar
  6. Maruyama, W., Nakahara, D., Dostert, P., Takahashi, A., and Naoi, M., 1993b, Naturally-occurring isoquinolines perturb monoamine metabolism in the brain: studied by in vivo microdialysis, J. Neural. Transm. [GenSect] in press.Google Scholar
  7. Maruyama, W., Takahashi, T., Minami, M., Takahashi, A., Dostert, P., Nagatsu, T. and Naoi, M., 1993c, Cytotoxicity of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines,Adv. Neurol. 60: 224–230.Google Scholar
  8. Minami, M., Takahashi, T., Maruyama, W., Takahashi, A., Dostert, P., Nagatsu, T., and Naoi, M., 1992, Inhibition of tyrosine hydroxylase by R and S enantiomers of salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4tetrahydroisoquinoline, J. Neurochem. 58: 2097–2102.PubMedCrossRefGoogle Scholar
  9. Minami, M., Maruyama, W., Dostert, P., Nagatsu, T. and Naoi, M., 1993, Inhibition of type A and B monoamine oxidase by 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolinesand their N-methylated derivatives, J. Neural. Transm. [GenSect] 92: 125–135.CrossRefGoogle Scholar
  10. Nagatsu, T. and Yoshida, M., 1988, An endogenous substance of the brain, tetrahydroisoquinoline, produces parkinsonism in primates with decreased dopamine, tyrosine hydroxylase and biopterin in the nigrostriatal regions, Neurosci. Lett. 87: 178–182.PubMedCrossRefGoogle Scholar
  11. Naoi, M., Matsuura, S., Parvez, H., Takahashi, T, Hirata, Y., Minami, M., and Nagatsu, T., 1989a, Oxidation of N-methyl-1,2,3,4-tetrahydroisoquinolineinto the N-methylisoquinolinium ion by monoamine oxidase, J. Neurochem. 52: 653–655.PubMedCrossRefGoogle Scholar
  12. Naoi, M., Matsuura., S., Takahashi, T., Nagatsu, T., 1989b, An N-methyltransferase in human brain catalyses N-methylation of 1,2,3,4-tetrahydroisoquinoline into N-methylisoquinolinium ion, Biochem. Biophys. Res. Commun. 161: 1213–1219.Google Scholar
  13. Naoi, M., Takahashi, T., Parvez, H., Kabeya, R., Taguchi, E., Yamaguchi, K., Hirata, Y., Minami, M., Nagatsu, T., 1989c, N-Methylisoquinolinium ion as an inhibitor of tyrosine hydroxylase, aromatic Lamino acid decarboxylase and monoamine oxidase, Neurochem. Int. 15: 315–320.PubMedCrossRefGoogle Scholar
  14. Naoi, M., Dostert, P., Yoshida, M. and Nagatsu, T., 1993, N-Methylated tetrahydroisoquinolines as dopaminergic neurotoxins, Adv. Neurol. 60: 212–217.PubMedGoogle Scholar
  15. Naoi, M., Maruyama, W., Acworth, I.N. Nakahara, D. and Parvez, H., 1993, Multi-electrode detection system for detection of neurotransmitters. in: “Methods for Neurotransmitter and Neuropeptide Research, Part 1”, Elsevier Science Publishers, Amsterdam, pp. 1–39.Google Scholar
  16. Niwa, T., Takeda, N., Kaneda, N., Hashizume, Y., and Nagatsu, T., 1987, Presence of tetrahydroisoquinoline and 2-methylisoquinoline in parkinsonian and normal human brain, Biochem. Biophys. Res. Commun. 144: 1084–1089.PubMedCrossRefGoogle Scholar
  17. Niwa, T., Takeda, N., Yoshizumi, H., Tatematsu, A., Yoshida, M. Dostert, P., Naoi, M., and Nagatsu, T., 1990, Endogenous synthesis of N-methyl-1,2,3,4-tetrahydroisoquinoline, a precursor of Nmethylisoquinolinium ion, in the brain of primates with parkinsonism after systemic administration of 1,2,3,4-tetrahydroisoquinoline, J. Chromatogr. 533: 145–151.PubMedGoogle Scholar
  18. Niwa, T., Takeda, N., Yoshizumi, Y., Tatematsu, A., Yoshida, M., Dostert, P., Naoi, M., and Nagatsu, T., 1991, Presence of 2-methy1–6,7-lhydroxy-1,2,3,4-tetrahydroisoquinoline and 1,2- dimethyl-6,7dihydroxy-1,2,3,4-tetrahydroisoquinotine, novel endogenous amines, in par1dnsonian and normal human brain, Biochem. Biophys. Res. Commun. 177: 603–609.PubMedCrossRefGoogle Scholar
  19. Ohta, S., Kohno, M., Makino, Y., Tachikawa, O., and Hirobe, M., 1987, Tetrahydroisoquinoline and 1methyl-tetrahydroisoquinoline are resent in the human brain: Relation to Parkinson’s disease. Biomed. Res. 8: 433–456.Google Scholar
  20. Sandler, M., Bonham-Carter, S., Hunter, K, R.M and Stem, G. M. 1973, Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-DOPA in man, Nature 241: 439–443.Google Scholar
  21. Strolin Benedette, M., Bellotti, V., Pianeola, E., Moro, E., Carminati, P. and Dostert, P., 1989, Ratio of the R and S enatiomers of salsolinol in food and human urine, J. Neural. Transm. 77: 47–53.CrossRefGoogle Scholar
  22. Suzuki, K., Mizuno, Y., Yamauchi, Y., Nagatsu, T. and Yoshida, M., 1992, Selective inhibition of complex I by N-methylisoquinolinium ion and N-methyl-1,2,3,4-tetrahydroisoquinolinein isolated mitochondria prepared from mouse brain, J. Neurol. Sci. 109: 219–223.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Makoto Naoi
    • 1
  • Wakako Maruyama
    • 2
  • Philippe Dostert
    • 3
  • Daiichiro Nakahara
    • 4
  • Tsutomu Takahashi
    • 5
  • Toshiharu Nagatsu
    • 6
  1. 1.Department of BiosciencesNagoya Institute of TechnologyNagoyaJapan
  2. 2.Department of NeurologyNagoya University School of MedicineNagoyaJapan
  3. 3.Farmitalia Carlo ErbaResearch and DevelopmentMilanItaly
  4. 4.Department of PsychologyNagoya University College of Medical TechnologyNagoyaJapan
  5. 5.Department of Food and NutritionKonan Women’s CollegeKonanJapan
  6. 6.Division of Molecular Genetics (ll)Fujita Health UniversityToyoakeJapan

Personalised recommendations