Preclinical Evaluation of Linopirdine: Neurochemical and Behavioral Effects

  • Robert Zaczek
  • Kenneth W. Rohrbach
  • S. William Tam
  • Leonard Cook
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


The observation that profound losses in neocortical cholinergic innervation (Davies and Maloney, 1976; Perry et al., 1978; Whitehouse et al., 1982; Coyle et al., 1983) occur in Alzheimer’s disease (AD) and data pointing to the importance of cholinergic function to learning and memory in animals (El-Defrawy et al, 1985; Watson et al. 1985, Hepler et al., 1985) have led to what has been called the cholinergic hypothesis of AD. This hypothesis states that the cholinergic losses observed in AD lead, at least in part, to the cognitive and mnemonic deficits observed in the disease. However, with the wide range of neurochemical alterations now documented in AD the cholinergic hypothesis appears to be an oversimplification (Price, 1986; D’Amato et al., 1987; Struble et al., 1987).


Passive Avoidance Lever Press Basal Release Cholinergic Hypothesis Place Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.G. Baxter, K.W. Rohrbach, S.W. Tam, R. Zaczek, K.M. Frick, S. Golski, R.-Q. Wan, and D.S. Olton, 1993, Effects of linopirdine (DuP 996) and X9121 on age-related memory impairments and on the cholinergic system, Drug Devel. Res.,in press.Google Scholar
  2. J.D. Brion, P. Curzon, M.J. Buckley, S.P. Americ, and M.W. Decker, 1993, Linopirdine (DuP996) facilitates the retention of avoidance training and improves performance of septal-lesioned rats in the water maze, Pharmacol. Biochem. Behay. 44: 37–43.CrossRefGoogle Scholar
  3. L. Cook L, G.F. Steinfels, K.W. Rohrbach and V.J. DeNoble, 1990, Cognition enhancement by the acetylcholine releaser DuP 996, Drug Devel. Res. 19: 301–314.CrossRefGoogle Scholar
  4. J.T. Coyle, D. Price, and M. DeLong, 1983, Alzheimer’s Disease: a disorder of cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  5. R.J. D’Amato, R.M. Zweig, P.J. Whitehouse, G.L. Wenk, H.S. Singer, R. Mayeux, D.L. Price, and S.H. Snyder, 1987, Aminergic systems in Alzheimer’s disease and Parkinson’s disease, Ann. Neurol. 22: 229–236.PubMedCrossRefGoogle Scholar
  6. P. Davies and A.J.F. Maloney, 1976, Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet 11: 1403.CrossRefGoogle Scholar
  7. R.E. Davis, M.E. Emmerling, J.C. Jaen, W.H. Moos, and K. Spiegel, 1993, Therapeutic intervention in dementia, Crit. Rev. Neurobiol. 7: 41–83.PubMedGoogle Scholar
  8. E.B. De Souza, B.L. Rule, and S.W. Tam, 1992, [3H]Linopirdine (DuP 996) labels a novel binding site in rat brain involved in the enhancement of stimulus-induced neurotransmitter release: autoradiographic localization studies, Brain Res. 582: 335–341.Google Scholar
  9. V.J. DeNoble, K.F. DeNoble, and K.R. Spencer, 1991, Protection against hypoxia-induced passive avoidance deficits: interactions between DuP 996 and ketanserin, Brain Res. Bull. 26: 817–20.PubMedCrossRefGoogle Scholar
  10. V.J. DeNoble, K.F. DeNoble, K.R. Spencer, L.C. Johnson, L. Cook, M.J. Myers, and R.M. Scribner, 1990, Comparison of DuP 996, with physostigmine, THA and 3,4-DAP on hypoxia-induced amnesia in rats, Pharmacol. Biochem. Behay. 36: 957–61.CrossRefGoogle Scholar
  11. G. Dent, S.W. Tam, and R. Grzanna, 1993, The memory enhancer linopirdine increases c-fos expression in cerebral cortex of aged rats, Soc. Neurosci. Abstr. 23: 4236.Google Scholar
  12. S.R. El-Defrawy, F. Coloma, K. Jhamandas, R.J. Boegman, R.J. Beninger, and B.A. Wisching, 1985, Functional and neurochemical cortical cholinergic impairment following neurotoxic lesions of the nucleus basalis magnocellularis in the rat, Neurobiol. Aging 6: 325–330.PubMedCrossRefGoogle Scholar
  13. J.M. Frey, P.A. Murphy, and B.S. Brown, 1991, DuP 996, a novel neurotransmitter releaser, blocks voltage-activated potassium currents in cultured neocortical neurons, Soc. Neurosci. Abstr. 21: 63220.Google Scholar
  14. D.J. Hepler, G.L. Wenk, B.L. Cribbs, D.S. Olton, and J.T. Coyle, 1985, Memory impairments following basal forebrain lesions, Brain Res. 346: 8–14.PubMedCrossRefGoogle Scholar
  15. B.W. Lampe and B.S. Brown, 1991, Electrophysiological effects of DuP 996 on hippocampal CAI neurons. Soc. Neurosci. Abstr. 21: 632. 19.Google Scholar
  16. M. Marynowski, C. Maciag, C.M. Rominger, S.W. Tam, and R. Zaczek, 1993, Effects of linopirdine (DuP 996) on hippocampal extracellular levels of acetylcholine in freely moving animals, Soc. Neurosci. Abstr. 23: 4238.Google Scholar
  17. V.J. Nickolson, S.W. Tam, M.J. Meyers, and L. Cook, 1990, DuP996 (3,3(4-pyrindylmethyl)lphenylindolin-2-one) enhances the stimulus evoked release of acetylcholine from rat brain in-vitro and in vivo, Drug Dev. Res. 19:285–300.Google Scholar
  18. E.K. Perry, B.E. Tomlinson, G. Blessed, K. Bergman, P.H. Gibson, and R.H. Perry, 1978, Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia, Br. Med. J. 2: 1427–1429.CrossRefGoogle Scholar
  19. D.L. Price, 1986, New perspectives on Alzheimer’s disease, Ann. Rev. Neurosci. 9: 489–512.PubMedCrossRefGoogle Scholar
  20. K.W. Rohrbach and L. Cook, 1990, An acquisition of lever pressing for food paradigm sensitive to the associative effects of drugs, The FASEB J. 4: A1109.Google Scholar
  21. B. Saletu, A. Darragh, H.P. Breuel, W. Herrmann, P. Salmon, R. Coen, and P. Anderer, 1991, EEG mapping central effects of multiple doses of linopirine -a cognitive enhancer-in healthy elderly male subjects, Human Psychopharmacol. 6:267–275.Google Scholar
  22. B. Saletu, A. Darragh, P. Salmon, and R. Coen, 1989, EEG brain mapping in evaluating the time-course of the central action of DUP 996-a new acetylcholine releasing drug, Br. J. Clin. Pharmacol. 28: 1–16.PubMedCrossRefGoogle Scholar
  23. J.A. Saydoff and R. Zaczek, 1993a, Linopirdine enhances KCI evoked release, but not basal release, of endogenous dopamine in superfused rat striatum, FASEB Abstr. 1521.Google Scholar
  24. J.A. Saydoff and R. Zaczek, 19936, The role of Ca’ channels, adenosine, and Ca“ stores on KCl evoked acetylcholine release and linopirdine (DuP 996) release enhancement in rat hippocampal slices, Soc. Neurosci. Abstr. 23: 4239.Google Scholar
  25. C.P. Smith, L.R. Broughm, and H.M. Vargus, 1993, Linopirdine (DuP 996) selectively enhances acetylcholine release induced by high potassium but not electrical stimulation in rat brain slices and guinea-pig ileum, Drug Devel. Res. 29: 262–270.CrossRefGoogle Scholar
  26. T.M. Smith, A.D. Ramirez, S.D. Heck, V.J. Jasys, R.A. Volkmann, J.T. Forman, and D.R. Liston, 1993, In vivo microdialysis and pharmacokinetic studies with DuP996, Soc. Neurosci. Abstr. 19: 4 2311.Google Scholar
  27. R.G. Struble, R.E. Powers, M.F. Casanova, C.A. Kitt, E.C. Brown, and D.L. Price, 1987, Neuropeptidergic systems in plaques of Alzheimer’s Disease, J. Neuropathol. Exp. Neurol. 46: 567–584.PubMedCrossRefGoogle Scholar
  28. S.W. Tam, D. Rominger, and V.J. Nickolson, 1991, Novel receptor site involved in enhancement of stimulus-induced acetylcholine, dopamine, and serotonin release, Mol. Pharmacol. 40: 16–21.PubMedGoogle Scholar
  29. W.J. Tinker, C. Maciag, S.W. Tam, and R. Zaczek, 1992, Effects of linopirdine (DuP 996) on KCI and CaCl2 dose response of potassium evoked release of [3H] acetylcholine from superfused hippocampal slices, Soc. Neurosci. Abstr. 22: 5 1812.Google Scholar
  30. T.W. Vickroy, 1993, Presynaptic cholinergic actions by the putative cognitive enhancing agent DuP 996. J. Pharmacol. Exp. Pier. 264: 910–7.Google Scholar
  31. M. Watson, T.W. Vickroy, H.C. Fibiger, W.R. Roeske, and H.I. Yamamura, 1985, Effects of bilateral ibotenate-induced lesions of the nucleus basalis magnocellularis upon selective cholinergic biochemical markers in the rat anterior cerebral cortex, Brain Res. 346: 387–391.PubMedCrossRefGoogle Scholar
  32. P. Whitehouse, D. Price, R. Struble, A. Clark, J.T. Coyle, and M. DeLong, 1982, Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain, Science 215: 237–239.CrossRefGoogle Scholar
  33. R. Zaczek, C. Maciag, and W.J. Tinker, 1993, Effects of linopirdine (DuP 996) on the KCI, veratridine, NMDA and electrically induced release of [3H] acetylcholine from superfused brain slices, Soc. Neurosci. Abstr. 23: 423. 7.Google Scholar
  34. R. Zaczek, W.J. Tinker, A.R. Logue, G.A. Cain, C.A. Teleha, and S.W. Tam, 1993a, Effects of linopirdine, HP-749, and Glycyl-Prolyl-Glutamate on transmitter release and uptake, Drug Develop. Res. 29: 203–208.CrossRefGoogle Scholar
  35. R. Zaczek, W.J. Tinker, and S.W. Tam, 1993b, Unique properties of norepinephrine release from terminals arising from the locus coeruleus: high potassium sensitivity and lack of linopirdine (DuP 996) enhancement, Neurosci. Lett. 155: 107–111.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Robert Zaczek
    • 1
  • Kenneth W. Rohrbach
    • 1
  • S. William Tam
    • 1
  • Leonard Cook
    • 1
  1. 1.Central Nervous Systems Diseases ResearchThe DuPont Merck Pharmaceutical CompanyWilmingtonUSA

Personalised recommendations