Advertisement

Catecholamine-Containing Biodegradable Microsphere Implants: An Overview of Experimental Studies in Dopamine-Lesioned Rats

  • Amanda McRae
  • Annica Dahlström
  • Stephan Hjorth
  • Eng Ang Ling
  • David Mason
  • Thomas Tice
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

The main neurochemical characteristic of Parkinson’s disease (PD) is a marked lesion of the nigro-striatal dopamine pathway. In attempts to provide dopamine replacement therapy to Parkinson’s patients, the current medication is L-DOPA (Birkmayer and Hornykiewicz, 1961). Dopamine (DA) itself cannot be taken orally because it will not reach the brain. Unfortunately, L-DOPA can cause serious adverse reactions and its effectiveness decreases with time. For these reasons, there has been an increasing demand for and interest in novel techniques for site-directed delivery of substances into the central nervous system (CNS) (Stahl, 1984).

Keywords

Rotational Behavior Fiber Growth Experimental Parkinsonism Oculogyric Crisis Nerve Growth Factor Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankiewicz, K.S., Plunkett, R.J., Kopin, I.J., Jacobowitz, D.M., London, W.T., and Oldfield, E.H.,1988, Transient behavioral recovery in hemiparkinsonian primates after adrenal medullary allografts, in: “Transplantation into the Mammalian CNS: Preclinical and Clinical Studies, D.M. Gash and J.R. Sladek., eds, Elsevier, Amsterdam.Google Scholar
  2. Bates I.P., 1984, The blood brain barrier and the central nervous system penetration, Phan’’’. J. 30: 265.Google Scholar
  3. Birkmayer, W., and Homykiewicz, 0., 1961, Der 1–3,4-dioxyphenylanin (I-DOPA)-effek bei der Parkinson-Akinesia, Klin. Wochenschr. 73: 787.Google Scholar
  4. Bodor, N. and Simpkins, JW., 1983, Redox delivery system for brain-specific sustained release of dopamine, Science 221: 65.PubMedCrossRefGoogle Scholar
  5. Colpaert, F., 1993, Noradrenergic mechanisms in Parkinson’s disease:a theory, in: “Noradrenergic Mechanisms in Parkinson’s Disease”, M. Briley, and M. Marten, eds, CRC Press Inc., Boca Raton. pp 225–254.Google Scholar
  6. During M.J., Freese A., Sabel W.M., Deutch A., Roth R.H. and Langer R., 1989, Controlled release of dopamine from a polymeric brain implant: in vivo characterization, Ann. Neurol. 25: 351.PubMedCrossRefGoogle Scholar
  7. Furukawa, Y., Furukawa, S., Satoyoshi, E. and Hayashi, K., 1986, Catecholamines induce an increase in nerve growth factor content in the medium of mouse L-M cells, J. Biol. Chem. 261: 6039.PubMedGoogle Scholar
  8. Gardner, C.R., 1985, Chemical appraoches to drug delivery to the central nervous system, Psychopharmacol. Bull. 21: 657.PubMedGoogle Scholar
  9. Goldman, P. N., 1982, Rate controlled drug delivery, Eng. J. Med. 307: 286.CrossRefGoogle Scholar
  10. Hargraves, R., and Freed, W. J., 1987, Chronic intrastriatal dopamine infusion in rats with unilateral lesions of the substantia nigra, Life Sci. 40: 959.PubMedCrossRefGoogle Scholar
  11. Henderson, N.L., 1983, Recent advances in drug delivery systems technology, in: “Annual Reports in Medicinal Chemistry’, R.C. Allen, ed., Academic Press, New York, pp. 275–284.Google Scholar
  12. Herrera-Marschitz, M., and Ungerstedt, U., 1984, Evidence that apomorphine and pergolide induce rotation in rats by different actions on D1 and D2 receptor sites, Eur. J. Pharmacol. 98: 165.PubMedCrossRefGoogle Scholar
  13. McRae-Degueurce, A., Hjorth, S., Dillon, L., Mason, D., and Tice, T., 1988, Implantable microencapsulated dopamine (DA): a new approach for slow-release DA delivery into brain tissue, Neurosci, Lett. 92: 303.Google Scholar
  14. McRae, A., Hjorth, S., Dahlström, A., Dillon, L., Mason, D., and Tice, T., 1992, Dopamine fiber growth induction by implantation of synthetic dopamine-containing microspheres in rats with experimental hemi-Parkinsonism, Mol. Chem. Neuropathol. 16: 123PubMedCrossRefGoogle Scholar
  15. McRae, A., Hjorth, S., Mason, D, Dillon, L. and Tice, T., 1990, Implantable microencapsulated dopamine: prolonged functional release of DA in denervated striatal tissue, J. Neural Transm. (suppl) 29: 207.Google Scholar
  16. McRae, A., Ling, E.A., Hjorth, S., Dahlstrom, A., Mason, D., and Tice, T., Catecholamine-containing biodegradable microsphere implants as a novel approach in the treatment of CNS neurodegenerative disease: a review of experimental studies in DA-Iesioned rats, Mol. Neurobiol.,in press.Google Scholar
  17. Ommaya, A.K., 1984, Implantable devices for chronic access and drug delivery to the central nervous system, Cancer Drug Deliv. 1: 169.PubMedCrossRefGoogle Scholar
  18. Paxinos, G., and Watson C., 1982, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.Google Scholar
  19. Richardson, D.E., and Heath, R.G., 1992, Treatment of Parkinson’s disease by injection of norepinephrine into the corpus striatum, Acta Neurochirurgica 117: 124.Google Scholar
  20. Shu, S., Ju, G., and Fan, L., 1988, The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system, Neurosci. Lett. 85: 169.PubMedCrossRefGoogle Scholar
  21. Stahl, S.M., 1984, Applications of new drug delivery technologies to Parkinson’s disease and dopaminergic agents, J. Neural Transm. [Suppl] 27: 123.Google Scholar
  22. Stromberg, I., Herrera-Marschitz, M., Hultgren, L., Ungerstedt, U., and Olson, L.,1984, Adrenal medullary implants in the dopamine-denervated rat striatum, I. Acute catecholamine levels in grafts and host caudate as determined by HPLC-electrochemistry and fluorescence histochemical image analysis, Brain Res. 297: 41.Google Scholar
  23. Tice, T.R., and Cowsar, D.R., 1984, Biodegradable controlled-release parenteral systems, Pharnuaceut. Technol. November: 26.Google Scholar
  24. Tice, T.R., and Tabibi, E., 1992, Parenteral drug delivery: Injectables, in: “Treatise on Controlled Drug Delivery”, A. Kydonieus, ed., Marcel Dekker, Inc. New York.Google Scholar
  25. Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand., suppl 367: 69.Google Scholar
  26. Winn, S.R., Wahlberg, L., Tresco, P.A., and Aebischer, P., 1989, An encapsulated dopamine-releasing polymer alleviates experimental Parkinsonism in rats, Exp. Neurol., 105: 244.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Amanda McRae
    • 1
  • Annica Dahlström
    • 1
  • Stephan Hjorth
    • 2
  • Eng Ang Ling
    • 3
  • David Mason
    • 4
  • Thomas Tice
    • 4
  1. 1.Department of Anatomy and Cell BiologyUniversity of GöteborgGöteborgSweden
  2. 2.Department of PharmacologyUniversity of GöteborgGöteborgSweden
  3. 3.Department of AnatomyNational University of SingaporeSingapore 0511Singapore
  4. 4.Southern Research InstituteBirminghamUSA

Personalised recommendations