Advertisement

Effect of JTP-2942, a Novel TRH Analogue, on Cognitive Function and Learning in Rodents

  • Fumihiko Yonemori
  • Hideki Yamada
  • Atsuhiro Uemura
  • Satomi Takeuchi
  • Katsuo Toide
  • Kunio Iwata
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Thyrotropin-releasing hormone (TRH) is a hypothalamic hormone that releases thyrotropin and prolactin from the anterior pituitary, and is widely distributed throughout the central nervous system (CNS).1–5 It has been shown to have various central actions, such as promoting locomotor activity, increasing body temperature in animals, attenuating pentobarbital induced sleep, and promoting recovery from traumatic loss of consciousness in mice.6–10 TRH also increases cholinergic neuronal activity11–14 and improves memory in amnesia models.15 Currently TRH and its analogues are under clinical investigation for treating spinal cord injury, traumatic brain injury, and dementia including Alzheimer’s disease.16–18 However, TRH has some disadvantages for therapeutic use, including a short duration of action and unsuitability for oral administration. Accordingly, we synthesized a novel TRH analogue, Nα-WS, 2R)-2-methyl-4-oxocyclopentanecarbonyl]-L-histidyl-L-prolineamide monohydrate (JTP2942), with a longer duration of action on the CNS and fewer hormonal effects than TRH.19–21 JTP-2942 has been shown to markedly increase CNS cholinergic neuronal activity22 and improve memory in amnesia models and aged animals.23,24 The callosal-neocortical system is implicated in interhemispheric transfer of the engram and the lateralization of information.25–27 The present study investigated whether JTP-2942 could improve cognitive function and learning in rats subjected to a passive avoidance test after transection of the corpus callosum, and investigated the mechanism of action of this drug using the transcallosal response.

Keywords

Corpus Callosum Thyrotropin Release Hormone Acquisition Trial Negative Component Dark Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Boler, F.M. Enzmann, K. Folkers, C. Bowers, and A.V. Schalley, The identity of chemical and hormonal properties of thyrotropin-releasing hormone and pyroglutamyl-histidyl-prolineamide, Biochem. Biophys. Res. Commun. 37: 705 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    M.J. Brownstein, M. Palkovits, J.M. Saavedra, R.M. Bassin, and R.D. Utiger, Thyrotropin-releasing hormone in specific nuclei of rat brain, Science 185: 267 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    J.E. Morley, Extrahypothalamic thyrotropin releasing hormone (TRH) - its distribution and its functions, Life Sci. 25: 1539 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    P.C. Emson, G.W. Bennet, and M.N. Rossor, The distribution and characterization of thyrotropin releasing hormone (TRH) in the human brain, Neuropeptides 2: 115 (1981).CrossRefGoogle Scholar
  5. 5.
    C.R. Parker Jr., and J.C. Porter, Regional localization and subcellular compartmentalization of thyrotropin releasing hormone in adult human brain, J. Neurochem. 41: 1614 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    G.G. Yarbrough, On the neuropharmacology of thyrotropin releasing hormone (TRH), Progr. Neurobiol. 12: 291 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Yamamoto, and M. Shimizu, Effect of a new TRH analogue, YM-14673 on the central nervous system, Naunyn-Schmiedeberg’s Arch. Pharmacol. 336: 561 (1987).PubMedGoogle Scholar
  8. 8.
    G.R. Breese, J.M. Cott, B.R.Cooper, A. J. Prange, M.A. Jr. Lipton, and N.P. Plotnikoff, Effect of thyrotropin releasing hormone (TRH) on the action of pentobarbital and other centrally acting drugs, J. Pharmacol. Exp. Ther. 193: 11 (1975).Google Scholar
  9. 9.
    D.E. Schmidt, Effect of thyrotropin releasing hormone (TRH) on pentobarbital-induced decrease in cholinergie neuronal activity, Comm. Pychopharmacol. 1: 469 (1977).Google Scholar
  10. 10.
    M. Yamamura, K. Kinoshita, H. Nakagawa, and R. Ishida, Pharmacological study of TA-0910, a new thyrotropin-releasing hormone (TRH) analogue (II); Inhibition of pentobarbital anesthesia, Jpn. J. Pharmacol. 55: 69 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Narumi, Y. Nagai, M. Miyamoto, and Y. Nagawa, Thyrotropin-releasing hormone (TRH) and its analogue (DN-1417): interaction with pentobarbital in choline uptake and acetylcholine synthesis of rat brain slice, Life Sci. 32: 1637 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    M.G. Giovannini, F Casamenti, A. Nistri, F. Paoli, and G. Pepeu, Effect of thyrotropin releasing hormone (TRH) on acetylcholine release from different brain areas investigated by microdialysis, Br. J. Pharmacol. 102: 363 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Okada, Effect of a new thyrotropin releasing hormone analogue, YM-14673, on the in vivo release of acetylcholine as measured by intracerebral dialysis in rats, J. Neurochem. 56: 1544 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Brunello, and D.L. Cheney, The septal-hippocampal cholinergie pathway: role in antagonism of pentobarbital anesthesia and regulation by various afferents, J. Pharmacol. Exp. Mer. 219: 489 (1981).Google Scholar
  15. 15.
    M. Yamamoto, and M. Shimizu, Effect of a new TRH analogue, YM-14673 on a passive avoidance test as a possible criterion of improvement in cognitive disturbance in rodents, Naunyn-Schmiedeberg’s Arch. Pharmacol. 338: 262 (1988).PubMedGoogle Scholar
  16. 16.
    E.C. Griffith, Thyrotropin-releasing hormone. New applications in the clinic, Nature 322: 212 (1986).CrossRefGoogle Scholar
  17. 17.
    E.C. Griffith, Clinical applications of thyrotropin-releasing hormone, Clin. Sci. 73: 449 (1987).Google Scholar
  18. 18.
    A.I. Farden, and S. Saizman, Pharmacological strategies in CNS trauma, Trends Pharmacol. Sci. 13: 29 (1992).CrossRefGoogle Scholar
  19. 19.
    J. Haruta, K. Sakuma, A. Yasuda, K. Hara, A. Saito, F. Yonemori, M. Matsushita, A. Uemura, K. Iwata, and I. Uchida, The synthesis and pharmacological activities of TRH analogues, Med. Chem Soc. (Abst) 12th Symposium: 52 (1991).Google Scholar
  20. 20.
    M. Matsushita, F. Yonemori, N. Furukawa, A. Ohta, I. Uchida, and K. Iwata, Effect of the novel thyrotropin-releasing hormone analogue Na-((ls,2R)-2-Methyl-4-oxocyclopentylcarbonyl)-L-histidylL-prolinamide Monohydrate on the central nervous system in mice and rats, Arzneimittel Forsch. Drug Res. 43: 813 (1993).Google Scholar
  21. 21.
    M. Matsushita, F. Yonemori, A. Hamada, M. Nakae, T. Suzuki, A. Ohta, K. Toide, and K. Iwata, Effect and mechanism of action of a novel TRH analogue, JTP-2942, on recovery from pentobarbital-induced anesthesia in rats, Jpn. J. Pharmacol. 61(Sup.: 113 (1993).Google Scholar
  22. 22.
    K. Toide, M. Shinoda, M. Takase, K. Iwata, and H. Yoshida, Effects of a novel thyrotropin-releasing hormone analogue, JTP-2942, on extracellular acetylcholine and choline levels in the rat frontal cortex and hippocampus, Eur. J. Pharmacol. 233: 21 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Uemura, F. Yonemori, N. Furukawa, K. Toide, and K. Iwata, Effect of novel TRH analogue, JTP2942, on various amnesia models in rodents, Jpn. J. Pharmacol. 61 (Sup.): 187 (1993).Google Scholar
  24. 24.
    H. Yamada, S. Takeuchi, K. Toide, and K. Iwata, Effect and mechanism of action of a novel TRH analogue, JTP-2942, on Morris water maze spatial cognitive impairment in aged rats, Jpn. J. Pharmacol. 61 (Sup.): 92 (1993).Google Scholar
  25. 25.
    L.T. Rutledge, and T.T. Kennedy, Brain-stem and cortical interactions in the interhemispheric delayed response, Exp. Neurol. 4: 470 (1961).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Bremer, Le corpus calloeux dans la dynamique cerebrale, Experientia 22: 201 (1966).PubMedCrossRefGoogle Scholar
  27. 27.
    G.O. Ivy, and H.P. Killackey, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195: 367 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Paxion, and C. Watson, “The rat brain in stereotaxic coordinates”, Academic Press, New York.Google Scholar
  29. 29.
    M.E. Jarvik, and A. Kopp, An improved one-trial passive avoidance, learning situation, Psychol. Rep. 27: 221 (1967).CrossRefGoogle Scholar
  30. 30.
    J. Seggie, and M. Berry, Ontogeny of interhemispheric evoked potentials in the rat: significance of myelination of the corpus callosum, Exp. Neurol. 35: 215 (1972).PubMedCrossRefGoogle Scholar
  31. 31.
    D.A. Wilson, and R.J. Racine, The postnatal development of post-activation potentiation in the rat neocortex, Develop. Brain Res. 7: 271 (1983).CrossRefGoogle Scholar
  32. 32.
    D.A. Wilson, A comparison of the postnatal development of post-activation potentiation in the neocortex and dentate gyros of the rat, Develop. Brain Res. 16: 61 (1984).CrossRefGoogle Scholar
  33. 33.
    V.L. Bianki, and V.A. Shramm, New evidence on the callosal system, Int. J. Neurosci. 25: 175 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    S.Okuyama, and H. Aihara, Action of nootropic drugs on transcallosal responses in rats, Neuropharmacology 27: 67 (1988).PubMedCrossRefGoogle Scholar
  35. 35.
    S.Okuyama, and H. Aihara, Effect of minaprine on synaptic transmission in the neocortex of the rat in vivo, Neuropharmacology 27: 915 (1988).CrossRefGoogle Scholar
  36. 36.
    P. Black, and R.E. Myers, Brainstem mediation of visual perception in a higher primate, Trans. Am. Neurol. Assoc. 93: 191 (1968).PubMedGoogle Scholar
  37. 37.
    T.H. Meikle, and J.A. Sechzer, Interocular transfer of brightness discrimination in split-brain cats, Science 132: 734 (1960).PubMedCrossRefGoogle Scholar
  38. 38.
    C.B. Trevarthen, Double visual learning in split-brain monkeys, Science 136: 258 (1962).PubMedCrossRefGoogle Scholar
  39. 39.
    T.J. Hoffman, C.L. Sheridan, and D.M. Levinson, Interocular transfer in albino rats as a function of forebrain plus midbrain commissurotomy, Physiol. Behay. 27: 279 (1981).CrossRefGoogle Scholar
  40. 40.
    T.H. Meikle, Failure of interocular transfer of brightness discrimination, Nature 202: 1243 (1964).PubMedCrossRefGoogle Scholar
  41. 41.
    R. Thompson, and I. Rich, Differential effects of posterior thalamic lesions on retention of various visual habits, J. Comp. Physiol. Psychol. 56: 60 (1963).CrossRefGoogle Scholar
  42. 42.
    R. Thompson, and P.H. Spiliotis, Subcortical lesions and retention of a brightness discrimination in the rat; Appetitive vs. aversive motivation, Physiol. Psychol. 9: 63 (1981).Google Scholar
  43. 43.
    C.K. Peck, S.G. Crewther, and C.R. Hamilton, Partial interocular transfer of brightness and movement discrimination by split-brain, Brain Res. 163: 61 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    C.R. Butler, A memory-record for visual discrimination habits produced in both cerebral hemispheres of monkey when only one hemisphere has received direct visual information, Brain Res. 10: 152 (1968).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Fumihiko Yonemori
    • 1
  • Hideki Yamada
    • 1
  • Atsuhiro Uemura
    • 1
  • Satomi Takeuchi
    • 1
  • Katsuo Toide
    • 1
  • Kunio Iwata
    • 1
  1. 1.Central Pharmaceutical Research InstituteJAPAN TOBACCO INC.Takatsuki, Osaka, 569Japan

Personalised recommendations