The Cholinotoxin AF64A Differentially Attenuates in Vitro Transcription of the Human Cholinesterase Genes

  • I. Hanin
  • A. Yaron
  • D. Ginzberg
  • H. Soreq
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Numerous reports in the literature have now demonstrated that ethylcholine aziridinium (AF64A) exerts selective cholinotoxicity, in vivo, in a number of animal species.1,2 These effects are dose-and time-dependent and reversible, when low concentrations of AF64A (e.g. ≤ 2 nmol/lateral ventricle in the rat) are used.3 The dose range for cholinoselectivity of AF64A needs to be established accurately with each specific application, since there is an upper dose limit at which AF64A begins to exert nonspecific degenerative effects.1

Keywords

AChE Activity Choline Acetyltransferase Ache Gene Cholinergic Nerve Terminal Transcription Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Hanin, AF64A-induced cholinergic hypofunction, in: “Cholinergic Neurotransmission: Functional and Clinical Aspects,” S.-M. Aquilonius and P.-G. Gillberg, eds., Elsevier Science Publishers, B.V., Amsterdam (1990).Google Scholar
  2. 2.
    I. Hanin, A. Fisher, H. Hortnagl, S.M. Leventer, P.E. Potter, and T.J. Walsh, in: “Psychopharmacology: The Third Generation Of Progress,” H.Y. Meltzer, ed., Raven Press, New York (1987).Google Scholar
  3. 3.
    A. El Tamer, J. Corey, E. Wulfert, and I. Hanin, Reversible cholinergic changes induced by AF64A in rat hippocampus and possible septal compensatory effect, Neuropharmacology 31: 397 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    C.R. Mantione, A. Fisher, and I. Hanin, The AF64A-treated mouse: possible model for central cholinergie hypofunction, Science 213: 579 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    Z. Pittel, A. Fisher, and E. Heldman, Reversible and irreversible inhibition of high affinity choline transport caused by ethylcholine aziridinium ion, J. Neurochem. 49: 468 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Fisher, C.R. Mantione, D.J. Abraham, and I. Hanin, Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo, J. Pharmacol. Exp. Therap. 222: 140 (1982).Google Scholar
  7. 7.
    D.L. Davies, N. Sakellaridis, T. Valcana, and A. Vemadakis, Cholinergic neurotoxicity induced by ethylcholine mustard aziridinium (AF64A) in neuron-enriched cultures, Brain Res. 378: 251 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Amir, Z. Pittel, A. Shahar, A. Fisher, and E. Heldman, Cholinotoxicity of the ethylcholine aziridinium ion in primary cultures from rat central nervous system, Brain Res. 454: 298 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    L.R. Santiago, R.A. Kroes, L.C. Erickson, and I. Hanin, Choline (Ch) and hemicholinium-3 (HC-3) protect against AF64A-induced changes in N-inys expression in the human neuroblastoma cell line (LA-N-2), Neurosci. Abstr. 19: 1747 (1993).Google Scholar
  10. 10.
    R.J. Rylett, and S.A. Walters, Uptake and metabolism of 131-]choline mustard by cholinergie nerve terminals from rat brain, Neuroscience 36: 483 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    R.J. Rylett, Synaptosomal ‘membrane-bound’ choline acetyltransferase is most sensitive to inhibition by choline mustard, J. Neurochem. 52: 869 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    R.J. Rylett, and E.H. Colhoun, Carrier-mediated inhibition of choline acetyltransferase, Life Sci. 26: 909 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Sandberg, R.L. Schnaar, M. McKinney, I. Hanin, A. Fisher, and J.T. Coyle, AF64A: an active site directed irreversible inhibitor of choline acetyltransferase, J. Neurochem. 44: 439 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    B.W. Futscher, R.O. Pieper, D.M. Barnes, I. Hanin, and L.C. Erickson, DNA-damaging and transcription-terminating lesions induced by AF64A in vitro, J. Neurochem. 58: 1504 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    L.F. Neville, A. Gnatt, Y. Loewenstein, S. Seidman, G. Ehrlich, and H. Soreq, Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE, EMBO. J. 11: 1641 (1992).PubMedGoogle Scholar
  16. 16.
    J. Liao, H. Heider, M.-C. Sun, and U. Brodbeck, Different glycosylation in acetylcholinesterase from mammalian brain and erythrocytes, J. Neurochem. 58: 1230 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    E. Lev-Lehman, A. El Tamer, D. Ginzberg, I. Hanin, and H. Soreq, Transient alterations in the in vivo levels of cholinesterase mRNAs suggest differential adjustment to cholinotoxic stimuli, in: This Book.Google Scholar
  18. 18.
    R. Hebel and M.W. Stromberg. “Anatomy of the Laboratory Rat,” The Williams and Wilkins Company, Waverly Press, Inc., Baltimore (1976).Google Scholar
  19. 19.
    H. Soreq, R. Ben-Aziz. C. Prody, S. Seidman, A. Gnatt, L. Neville, J. Lieman-Hurwitz, E. Lev-Lehman, D. Ginzburg, Y. Lapidot-Lifson, and H. Zakut, Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G+C rich attenuating structure, Proc. Natl. Acad. Sci. USA 87: 9688 (1990).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Soreq and H. Zakut, “Human Cholinesterases and Anticholinesterases,” Academic Press, S.D. (1993).Google Scholar
  21. 21.
    G.P. Holmquist, Evolution of chromosome bands: Molecular ecology of noncoding DNA, J. Mol. Evol. 28: 469 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Lev-Lehman, A. El Tamer, A. Yaron, M. Grifman, D. Ginzburg, I. Hanin, and H. Soreq, Cholinotoxic effects on acetylcholinesterase gene expression are associated with brain region specific alterations in G,C-rich transcripts, Mol. Brain Res. Submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • I. Hanin
    • 1
  • A. Yaron
  • D. Ginzberg
    • 2
  • H. Soreq
    • 2
  1. 1.Department of PharmacologyLoyola University Chicago Stritch School of MedicineMaywoodUSA
  2. 2.The Department of Biological Chemistry The Life Sciences InstituteHebrew UniversityJerusalemIsrael

Personalised recommendations