Skip to main content

Localization and Density of Transferrin Binding Sites in the Nigrostriatal System of Control Subjects and Patients with Parkinson’s Disease

  • Chapter
Alzheimer’s and Parkinson’s Diseases

Abstract

Parkinson’s disease (PD) is characterized by a progressive degeneration, mostly confined to the substantia nigra, of dopaminergic neurons which innervate the striatum. The loss of dopaminergic neurons is most severe in the substantia nigra (SN) pars compacta (50–85%), although neuronal death also occurs to a lesser degree (40–50%) in other groups of dopamine-containing neurons located in the mesencephalon (ventral tegmental area — peri- and retrorubral region — referred to as catecholaminergic cell group A8).1–3 The mechanisms by which dopaminergic cell death occurs in PD remain unknown. Many investigations have indicated that abnormal oxidative metabolism could be involved in the degeneration of these neurons. Excess free radicals are produced in excess in the SN of patients with PD. This overproduction could be due to autooxidation of dopamine, neuromelanin-associated toxicity, and iron.3 Increased iron concentrations have been reported in the SN of PD patients as compared to control subjects.4–11 As this metal can catalyze free radical production, it could be a deleterious and neurotoxic factor promoting oxidative stress and damage to a variety of biological molecules, including lipids, proteins and nucleic acids. Oxidative stress, increased by iron overload, may thus contribute selectively to the death of melanized dopaminergic neurons in the SN of PD patients.9,12–13 Although the mechanisms which account for iron uptake in dopaminergic neurons are unknown at present, a possible pathway for iron to gain access to neurons is the uptake from transferrin (Tf) through a receptor-mediated process.14 A higher density of transferrin receptors on melanized dopaminergic neurons of PD patients could bring a selective accumulation of iron in these cells. To test this hypothesis, we studied the regional distribution and density of [125I]-Tf binding sites in the mesencephalon obtained post mortem from parkinsonian patients and age-matched control subjects, using previously reported techniques.15,16 In control subjects we examined those regions of the basal ganglia to which dopaminergic neurons of the SN are projected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agid Y., Ruberg M., Javoy-Agid F., Hirsch E., Raisman-Vozari R., Vyas S., Faucheux B., Michel P., Kastner A., Blanchard V., Damier P., Villares J., and Zhang P, Are dopaminergic neurons selectively vulnerable to Parkinson’s Disease?, In: Advances in Neurology, Vol. 60 ( Narabayashi H., Nagatsu T., Yanagisawa N., and Mizuno Y., eds), Raven Press, New York (1993).

    Google Scholar 

  2. German D.C., Manaye K., Smith W.K., Woodward Di., and Saper C.B., Midbrain dopaminergic cell loss in Parkinson’s disease: Computer visualization, Ann. Neurol. 26: 507–514 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. Hirsch E.C., Graybiel A., and Agid Y., Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease, Nature 334: 345–348 (1988).

    Article  PubMed  CAS  Google Scholar 

  4. Earle K.M., Studies on parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J. Neuropathol. Exp. Neurol. 27: 1–14 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Sofic E., Riederer P., Beckmann H., Reynolds G.P., Hebenstreit G., and Youdim M.B.H., Increased iron III and total iron content in postmortem substantia nigra in parkinsonian brain, J. Neural Transm. 74, 199–205 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. Sofic E., Paulus W., Jellinger K., Riederer P., and Youdim M.B.H., Selective increase of iron in substantia nigra zona compacta of parkinsonian brains, J. Neurochem. 56, 978–982 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. Dexter D.T., Wells F.R., Agid F., Agid Y., Lees A., Jenner P., and Marsden C.D., Increased nigral iron content and alteration in other metals occuring in Parkinson’s disease, J. Neurochem. 52: 1830–1836 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. Hirsch E.C., Brandel J.P., Galle P., Javoy-Agid F., and Agid Y., Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An x-ray microanalysis, J. Neurochem. 56: 446–451 (1991).

    Article  PubMed  CAS  Google Scholar 

  9. Jellinger K., Kienzl E., Rumpelmair G., Riederer P., Stachelberger H., Ben-Shachar D., and Youdim M.B.H., Iron-melanin complex in substantia nigra of parkinsonian brains: An x-ray microanalysis, J. Neurochem. 59: 1168–1171 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Riederer P., Dirr A., Goetz M., Sofic E., Jellinger K., and Youdim M.B.H., Distribution of iron in different brain regions and subcellular compartments in Parkinson’s disease, Ann. Neurol. 32: [suppl.], 5101 - S104 (1992).

    Article  Google Scholar 

  11. Good P.F., Olanow C.W., and Perl D.P., Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminium in Parkinson’s disease: a LAMMA study, Brain Res. 593: 343–346 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. Dexter D.T., Carter CJ., Wells F.R., Javoy-Agid F., Agid Y., Lees A., Jenner P., and Marsden C.D., Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease, J. Neurochem. 52: 381–389 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. Youdim M.B.H., Ben-Shachar D., and Riederer P., Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol. Scand. 126: 47–54 (1989).

    Article  CAS  Google Scholar 

  14. Aisen P., Entry of iron into cells: a new role for the transferrin receptor in modulating iron release from transferrin, Ann. Neurol. 32: [suppl.], 62–68 (1992).

    Article  Google Scholar 

  15. Faucheux, BA., Hirsch, E.C., Villares, J., Selimi, F., Mouatt-Prigent, A, Javoy-Agid, F., Hauw, JJ., and Agid, Y. Distribution of I-Ferrotransferrin binding sites in the mesencephalon of control subjects and patients with Parkinson’s disease, J. Neurochem. 60: 2338–2341 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Mash D.C., Pablo J., Flynn D.D., Efange S.M.N., and Weiner WJ., Characterization and distribution of transferrin receptors in the rat brain, J. Neurochem. 55: 1972–1979 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. Kalaria R.N., Sromek S.M., Grahovac I., and Harik S.I., Transferrin receptors of rat and human brain and cerebral microvessels and their status in Alzheimer’s disease, Brain Res. 585: 87–93 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. Hill J.M., Ruff M.R., Weber RJ., and Pert C.B., Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution, Proc. Natl. Acad. Sci. USA 82: 4553–4557 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. Morris C.M., Candy J.M., Keith A.B., Oakley A.E, Taylor GA., Pullen R.G.L., Bloxham CA., Gocht A., and Edwardson JA., Brain iron homeostasis, J. Inorganic Biochem. 47: 257–265 (1992b).

    Article  CAS  Google Scholar 

  20. Dwork AJ., Schon EA., and Herbert J. Nonidentical distribution of transferrin and ferric iron in human brain, Neuroscience 27: 333–345 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. Mash D.C., Pablo J., Buck B.E., Sanchez-Ramos J., and Weiner WJ., Distribution and number of transferrin receptors in Parkinson’s disease and in MPTP-treated mice, Exp. Neurol. 114: 73–81 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. Dwork AJ., Lawler G., Zybert PA., Durkin M., Osman M., Willson N., and Barkai A.I., An autoradiographic study of the uptake and distribution of iron by the brain of the young rat, Brain Res. 518: 31–39 (1990).

    Article  PubMed  CAS  Google Scholar 

  23. Arvidson B., Retrograde axonal transport of metals, J. Trace Elements Exp. Med. 2: 343–347 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faucheux, B.A. et al. (1995). Localization and Density of Transferrin Binding Sites in the Nigrostriatal System of Control Subjects and Patients with Parkinson’s Disease. In: Hanin, I., Yoshida, M., Fisher, A. (eds) Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9145-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9145-7_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9147-1

  • Online ISBN: 978-1-4757-9145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics