Cell Surface Receptor Mediated Control of Amyloid Precursor Protein Secretion: Involvement of Pleiotropic Signal Transduction Cascades

  • Mark R. Emmerling
  • Catherine J. Moore
  • P. Danielle Doyle
  • Richard T. Carroll
  • Robert E. Davis
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


Amyloid plaques associated with brain vasculature and parenchyma are the pathological hallmark of Alzheimer’s Disease (AD) (Joachim and Selkoe, 1992). The deposits contain a variety of proteins but are mainly composed of a peptide with 39 to 43 amino acids, the ß-amyloid peptide (ß/A4). ß/A4 is derived from the proteolytic processing of a larger protein, the amyloid precursor protein (APP). APP is a family of membrane associated glycoproteins that are constitutively synthesized by a variety of cells including neurons and glia (Estus et al., 1992; Shoji et al., 1992; Busciglio et al., 1993). Proteolytic cleavage at a single site in its ß/A4 region releases the majority of APP from cells and at the same time eliminates the production of ß/A4 (Weidemann et al., 1989; Anderson et al., 1992). Alternatively, APP is processed by a second pathway that leads to the formation of intact, amyloidogenic ß/A4 (Haass et al., 1991; Golde et al., 1992; Hung et al., 1992). Cells normally produce small amounts of ß/A4, but genetic mutations (Cai et al., 1993a; Haass et al., 1993) and trauma (Roberts et al., 1991) can enhance the expression of the peptide.


Muscarinic Receptor Chinese Hamster Ovary Cell Chinese Hamster Ovary Muscarinic Agonist Muscarinic Receptor Subtype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.P., Chen, Y., Kim, K.S., and Robakis, N.K., 1992, An Alternative Secretase Cleavage Produces Soluble Alzheimer Amyloid Precursor Protein Containing a Potentially Amyloidogenic Sequence, J. Neurochem. 59: 2328.PubMedCrossRefGoogle Scholar
  2. Band, A.M., Jones, P.M., and Howell, S.L., 1992, Arachidonic acid-induced insulin secretion from rat islets of Langerhans, Biochim. Biophys. Acta 1176: 64.CrossRefGoogle Scholar
  3. Bourdeau, A., Souberbielle, J.-C., Bonnet, P., Herviaux, P., Sachs, C., and Lieberherr, M., 1992, Phospholipase-A2 action and arachidonic acid metabolism in calcium-mediated parathyroid hormone secretion, Endocrinology 130: 1339.PubMedCrossRefGoogle Scholar
  4. Buckley, N.J., Bonner, T.I., Buckley, C.M., and Brann, M.R., 1989, Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells, Mol. Pharmacol. 35: 469.PubMedGoogle Scholar
  5. Busciglio, J., Gabuzda, D.H., Matsudaira, P. and Yankner, B., 1993, Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells, Proc. Natl. Acad. Sci. 90: 2092.PubMedCrossRefGoogle Scholar
  6. Buxbaum, J.D., Oishi, M., Chen, H. I., Pinkas-Kramarski, R., Jaffee, E. A., Gandy, S. E. and Greengard, P., 1992, Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer B/A4 protein precursor, Proc. Natl. Acad. Sci. 89: 10075.PubMedCrossRefGoogle Scholar
  7. Cai, X.D., Golde, T.E. and Younkin, S.G., 1993a, Release of excess amyloid beta protein from a mutant amyloid beta protein precursor, Science 259: 514.PubMedCrossRefGoogle Scholar
  8. Cai, X.D., Golde, T.E., and Younkin, S.G., 1993b, Secretory processing of the Alzheimer amyloid beta/A4 protein precursor is increased by protein phosphorylation, Science 259: 514.PubMedCrossRefGoogle Scholar
  9. Caporaso, G.L., Gandy, S.E., Buxbaum, J.D., Ramabhadran, T.V., and Greengard, P., 1992, Chloroquine inhibits intracellular degradation but not secretion of Alzheimer beta/A4 amyloid precursor protein, Proc. Natl. Acad. Sci. 89: 3055.PubMedCrossRefGoogle Scholar
  10. Davis, R.E., M.R., E., Jaen, J.C., Moos, W.H., and Spiegel, K., 1993, Therapeutic intervention in Dementia, Crit. Rev. Neurobiol. 7: 41.Google Scholar
  11. Estus, S., Golde, T.E., Kunishita, T., Blades, D., Lowery, D., Eisen, M., Usiak, M., Qu, X. M., Tabira, T., Greenberg, B.D. et al., 1992, Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor, Science 255: 726.PubMedCrossRefGoogle Scholar
  12. Felder, C.C., Poulter, M.O. and Wess, J., 1992, Muscarinic receptor-mediated Ca2+ influx in transfected fibroblasts cells is independent of inositol phosphates and release of intracellular Ca2+, Proc. Natl. Acad. Sci. 89: 509.PubMedCrossRefGoogle Scholar
  13. Fukushima, D., Konishi, M., Maruyama, K., Miyamoto, T., Ishiura, S., and Suzuki, K., 1993, Activation of the secretory pathway leads to a decrease in the intracellular amyloidogenic fragments generated from the amyloid precursor protein precursor, Biochem. Biophys. Res. Commun. 194: 202.PubMedCrossRefGoogle Scholar
  14. Glaser, K.B., Mobilio, D., Chang, J.Y. and Senko, N., 1993, Phospholipase A2 enzymes: regulation and inhibition, Trends Pharmacol. Sci. 14: 92.PubMedCrossRefGoogle Scholar
  15. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. and Younkin, S.G., 1992, Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor, Science 255: 728.PubMedCrossRefGoogle Scholar
  16. Grosfils, K., Gomez, F. and Dehaye, J.P., 1992, Inhibition by mepacrine and amylase secretion from intact and permeabilized rat pancreatic acini, Biochem. Biophys. Res. Commun. 184: 408.PubMedCrossRefGoogle Scholar
  17. Haass, C., Hung, A.Y., Schlossmacher, M.G., Teplow, D.B., and Selkoe, D.J., 1993, Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production, J. Biol. Chem. 268: 3021.PubMedGoogle Scholar
  18. Haass, C., Hung, A.Y., and Selkoe, D.J., 1991, Characterization of alternative routes for processing of the Alzheimer beta/A4-amyloid precursor protein. Differential effects of phorbol esters and chloroquine, J. Neurosci. 11: 3783.PubMedGoogle Scholar
  19. Hung, A.Y., Haass, C., Nitsch, R.M., Qiu, W.Q., Citron, M., Wurtman, R.J., Growdon, J.H., andGoogle Scholar
  20. Selkoe, D. J., 1993, Activation of protein kinase C inhibits cellular production of the amyloid B-protein, J. Biol. Chem. in press.Google Scholar
  21. Hung, A.Y., Koo, E.H., Haass, C., and Selkoe, D.J., 1992, Amyloid beta-peptide is produced by cultured cells during normal metabolism, Proc. Natl. Acad. Sci. USA 89: 9439.PubMedCrossRefGoogle Scholar
  22. Joachim, C.L. and Selkoe, D.J., 1992, The seminal role of B-amyloid in the pathogeneis of Alzheimer’s Disease, Alzheimer’s Disease and Assoc. Disorders 6: 7.CrossRefGoogle Scholar
  23. Lahiri, D. K., Nall, C. and Farlow, M. R., 1992, The cholinergic agonist carbachol reduces intracellular beta-amyloid precursor protein in PC 12 and C6 cells, Biochem. Int. 28: 853.PubMedGoogle Scholar
  24. Mattson, M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, 1., and Rydel, R.E., 1993, Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein, Neuron 10: 243.Google Scholar
  25. Negishi, M., Ito, S. and Hayaishi, 0., 1990, Arachidonic acid stimulates phosphoinositide metabolism and catecholamine release from bovine adrenal chromaffin cells, Biochem. Biophys. Res. Commun. 169: 773.PubMedCrossRefGoogle Scholar
  26. Nitsch, R.M., Slack, B.E., Wurtman, R.J., and Growdon, J.H., 1992, Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors, Science 258: 304.PubMedCrossRefGoogle Scholar
  27. Otsuka, N., Tomonaga, M. and Ikeda, K., 1991, Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury, Brain Res. 568: 335.PubMedCrossRefGoogle Scholar
  28. Pahlsson, P., Shakin, E.S., and Spitalnik, S.L., 1992, N-linked glycosylation of beta-amyloid precursor protein, Biochem. Biophys. Res. Commun. 189: 1667.PubMedCrossRefGoogle Scholar
  29. Prabhati, R., Berman, J.D., Middleton, W., and Brendle, J., 1993, Botulinum toxin inhibits acrachidonic acid release associated with acetylcholine from PC12 cells, J. Biol. Chem. 268: 1 1057.Google Scholar
  30. Roberts, G.W., Gentleman, S.M., Lynch, A., and Graham, D.I., 1991, Post-traumatic Alzheimer’s disease: preponderance of a single plaque type, Lancet 338: 1422.PubMedCrossRefGoogle Scholar
  31. Shoji, M., Golde, T.E., Ghiso, J., Cheung, T.T., Estus, S., Shaffer, L.M., Cai, X. D., McKay, D. M., Tintner, R., Frangione, B. and Younkin, S.G., 1992, Processing of the amyloid protein precursor to potentially amyloidogenic derivatives, Science 258: 126.PubMedCrossRefGoogle Scholar
  32. Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson, B.J., and Klenk, D.C., 1985, Measurement of protein using bicinchoninic acid, Anal. Biochem. 150:76.Google Scholar
  33. Weidemann, A., Konig, G., Bunke, D., Fischer, P., Salbaum, J.M., Masters, C.L., and Beyreuther, K., 1989, Identification, biogenesis, and localization of precursors of Alzheimers disease A4 amyloid protein, Cell 57: 115.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark R. Emmerling
    • 1
  • Catherine J. Moore
    • 1
  • P. Danielle Doyle
    • 1
  • Richard T. Carroll
    • 1
  • Robert E. Davis
    • 1
  1. 1.Neuroscience PharmacologyParke-Davis Pharmaceutical Research Division of Warner-Lambert CompanyAnn ArborUSA

Personalised recommendations