Alternating Copolymerization in the Presence of Lewis Acids

  • Clement H. Bamford
Chapter
Part of the Speciality Polymers book series (SPEPO)

Abstract

The existence of an “alternating tendency” in the copolymerization of many pairs of vinyl monomers has long been recognized. According to the treatment developed by Mayo, Walling, Melville, and their collaborators(1) in a monomer pair A, D radical ~A· reacts preferentially with monomer D and vice versa when the monomers are of comparable general reactivity; thus both reactivity ratios r A and r D are less than unity; the product r A r D is conventionally taken as an inverse measure of the alternating tendency. The alternating tendency may be so great that equimolar alternating copolymers are formed; in such instances the monomer pair usually comprises one strong electron acceptor and one strong electron donor. Examples of acceptors include maleic anhydride, fumaric esters, vinylidene cyanide, carbon monoxide, and sulfur dioxide, while the donors are usually relatively nonpolar monomers such as styrene, isobutene, vinyl acetate, and vinyl ethers.

Keywords

Lewis Acid Methyl Methacrylate Ternary Complex Benzoyl Peroxide Methyl Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. H. Bamford, W. G. Barb, A. D. Jenkins and P. F. Onyon. The Kinetics of Vinyl Polymerization by Radical Mechanisms, Butterworths, London (1958).Google Scholar
  2. 2.
    M. Hirooka, H. Yabuuchi, S. Morita, S. Kawasumi, and K. Nakaguchi, J. Polym. Sci. B, 5, 47 (1967).Google Scholar
  3. 3.
    C. H. Bamford, Radical Intermediates in Polymerization Processes, In: Molecular Behaviour and the Development of Polymeric Materials. ( A. Ledwith and A. M. North, eds.), Chapman and Hall, London (1975), pp. 51–87.Google Scholar
  4. 4.
    H. C. Haas and E. R. Karlin, J. Polym. Sci., 9, 588 (1952).Google Scholar
  5. 5.
    C. H. Bamford, A. D. Jenkins, and R. Johnston, Proc. R. Soc. London A, 241, 364 (1957).Google Scholar
  6. 6.
    C. H. Bamford, A. D. Jenkins, and R. Johnston, Trans. Farad. Soc., 55, 418 (1959)Google Scholar
  7. A. D. Jenkins In: Reactivity, Mechanism and Structure in Polymer Chemistry (A. D. Jenkins and A. Ledwith, eds.), Wiley, New York (1974), Chap. 4.Google Scholar
  8. 7.
    V. A. Kargin, V. A. Kabanov, and V. P. Zubov, Vysokomol Soedin., 2, 765 (1960).Google Scholar
  9. 8.
    F. A. Bovey, J. Polym. Sci. 47, 480 (1960).Google Scholar
  10. 9.
    T. Otsu, B. Yamada, and M. Imoto, J. Macromol. Chem., 1, 61 (1966).Google Scholar
  11. 10.
    M. Imoto, T. Otsu, and Y. Harada, Makromol. Chem., 65, 174 (1963).Google Scholar
  12. 11.
    M. Imoto, T. Otsu, and Y. Harada, Makromol. Chem., 65, 180 (1963).Google Scholar
  13. 12.
    C. H. Bamford, S. Brumby, and R. P. Wayne, Nature, 209, 292 (1966).Google Scholar
  14. 13.
    M. B. Lachinov, V. P. Zubov, and V. A. Kabanov, Vysokomol. Soedin., B, 12, 4 (1970).Google Scholar
  15. 14.
    V. P. Zubov, M. B. Lachinov, V. B. Golubev, V. F. Kulikova, V. A. Kabanov, L. S. Polak, and V. A. Kargin, J. Polym. Sci. C, 23, 147 (1968).Google Scholar
  16. 15.
    V. B. Golubev, V. P. Zubov, L. I. Valuev, G. S. Naumova, and V. A. Kabanov, Vysokomol. Soedin. A, 15, 504 (1973).Google Scholar
  17. 16.
    M. B. Lachinov, B. M. Abu-el’Khair, V. P. Zubov, and V. A. Kabanov, Polym. Sci. USSR, 15, 1527 (1973).Google Scholar
  18. 17.
    V. A. Kabanov, J. Polym. Sci. C, 67, 17 (1980).Google Scholar
  19. 18.
    M. B. Lachinov, T. R. Aslamazova, V. P. Zubov, and V. A. Kabanov, Vysokomol. Soedin, 17, 1146 (1975).Google Scholar
  20. 19.
    S. Yabumoto, K. Ishii, and K. Arita, J. Polym. Sci. A-I, 7, 1577 (1969).Google Scholar
  21. 20.
    V. P. Zubov, L. I. Valuev, V. A. Kabanov, and V. A. Kargin, J. Polym. Sci. A-I, 9, 833 (1971).Google Scholar
  22. 21.
    D.-J. Liaw and K.-C. Chung, Makromol Chem., 184, 29 (1983).Google Scholar
  23. 22.
    M. Hirooka, J. Polym. Sci. B, 10, 171 (1972).Google Scholar
  24. 23.
    M. Hirooka, 23rd IUPAC Congress, Boston, 1971; Macromol. Preprint, 1, 311.Google Scholar
  25. 24.
    M. Hirooka, Studies on Alternating Copolymerization with Alkylaluminum Halide, Doctoral Thesis, Kyoto University, Japan, 1971.Google Scholar
  26. 25.
    M. Hirooka, H. Yabuuchi, S. Kawasumi, and K. Nakaguchi, J. Polymer Sci. Chem. Ed., 11, 1281 (1973).Google Scholar
  27. 26.
    H. Hirai, J. Polymer Sci. Macromol Rev., 11, 47 (1976).Google Scholar
  28. 27.
    C. H. Bamford and P. J. Malley, J. Polym. Sci. Polym. Lett. Ed., 19, 239 (1981).Google Scholar
  29. 28.
    Z. A. Tikhonova, N. N. Slavnitskaya, and Yu. D. Semchikov, XVIII Vsesoyuzn, konferentsia po polymersam (18th All-Union Conference on Polymers), Kazan 1973, Abstracts of papers, p. 28.Google Scholar
  30. 29.
    R. L. Funt and G. A. Pawelchak, J. Polym. Sci. Polym. Chem. Ed., 14, 2639 (1976).Google Scholar
  31. 30.
    P. D. Bartlett and K. Nozaki, J. Am. Chem. Soc., 68, 1495 (1946)Google Scholar
  32. P. D. Bartlett and K. Nozaki, J. Am. Chem. Soc., 69, 2299 (1947).Google Scholar
  33. 31.
    C. Walling, E. R. Briggs, K. B. Wolfstirn, and F. R. Mayo, J. Am. Chem. Soc., 70, 1537 (1948).Google Scholar
  34. 32.
    C. Walling, Free Radicals in Solution, Wiley and Sons, New York (1957).Google Scholar
  35. 33.
    P. Hyde and A. Ledwith, In: Molecular Complexes, Vol. II ( R. Foster, ed.) Elek Press, London (1974).Google Scholar
  36. 34.
    Y. Shirota, M. Yoshimura, A. Matsumoto, and H. Mikawa, Macromolecules, 7, 4 (1974).Google Scholar
  37. 35.
    M. Yoshimura, H. Mikawa, and Y. Shirota, Macromolecules, 8, 713 (1975).Google Scholar
  38. 36.
    M. Yoshimura, T. Nogami, M. Yokoyama, H. Mikawa, and Y. Shirota, Macromolecules, 9, 211 (1976).Google Scholar
  39. 37.
    M. Yoshimura, H. Mikawa, and Y. Shirota, Macromolecules, 11, 1085 (1978).Google Scholar
  40. 38.
    M. Rätzsch, M. Arnold, and V. Steiner, Paper presented at IUPAC Macromolecular Symposium, Amherst, Massachusetts (1982); M. Arnold and M. Rätzsch, Plaste and Kautsch., 7, 381 (1982).Google Scholar
  41. 39.
    J. Furukawa, E. Kobayashi, and Y. Iseda, Polym. J., 1, 155 (1970).Google Scholar
  42. 40.
    N. G. Gaylord and B. Matyska, J. Macromol Sci. Chem., A4, 1507 (1970).Google Scholar
  43. 41.
    T. Ikegami and H. Hirai, J. Polym. Sci. Al, 8, 195 (1970).Google Scholar
  44. 42.
    N. G. Gaylord, J. Macromol. Sci. Chem., 6, 259 (1972).Google Scholar
  45. 43.
    H. Hirai, T. Ikegami, and S. Makishima, J. Polym. Sci. Al, 7, 2059 (1969).Google Scholar
  46. 44.
    S. Okuzawa, H. Hirai, and S. Makishima, J. Polym. Sci. Al, 7, 1039 (1969).Google Scholar
  47. 45.
    T. Ikegami and H. Hirai, Chem. Commun. 1, 59 (1969).Google Scholar
  48. 46.
    H. Hirai and T. Ikegami, J. Polym. Sci. Al, 8, 2407 (1970).Google Scholar
  49. 47.
    T. Ikegami and H. Hirai, J. Polym. Sci. AI, 8, 463 (1970).Google Scholar
  50. 48.
    H. J. Coerver and C. Curran, J. Am. Chem. Soc., 80, 3522 (1958).Google Scholar
  51. 49.
    W. Gerrard, M. F. Lappert, and J. W. Wallis, J. Chem. Soc. 21, 78 (1960).Google Scholar
  52. 50.
    W. Gerrard, M. F. Lappert, H. Pyszora, and J. W. Wallis, J. Chem. Soc. 21, 82 (1960).Google Scholar
  53. 51.
    I. Cooke, B. P. Susz, and C. Herschmann, HeIv. Chim. Acta., 37, 1273 (1954).Google Scholar
  54. 52.
    H. Hirai, S. Okuzawa, T. Ikegami, and S. Makishima, J. Fac. Eng. Univ. Tokyo, B29, 115 (1967).Google Scholar
  55. 53.
    Z. A. Tikhonova, Yu. D. Semchikov, A. V. Ryabov, and T. I. Liogonikaya, Tr. Khim. Tekhnologii, Gorky, 3 (42), 21 (1975).Google Scholar
  56. 54.
    B. Yamada, N. Kusumoki, and T. Otsu, J. Chem. Soc. Jpn (Ind. Chem. Sect.), 72, 364 (1969).Google Scholar
  57. 55.
    J. J. Myher and K. E. Russell, Can. J. Chem., 42, 1555 (1964).Google Scholar
  58. 56.
    H. Hirai and M. Komiyama, J. Polym. Sci. Polym. Lett. Ed., 10, 925 (1972).Google Scholar
  59. 57.
    H. Hirai and M. Komiyama, J. Polym. Sci. Polym. Chem. Ed., 12, 2701 (1974).Google Scholar
  60. 58.
    M. Komiyama and C. Hirai, J. Polym. Sci. Polym. Chem. Ed., 14, 1993 (1976).Google Scholar
  61. 59.
    J. Furukawa, E. Kobayashi, S. Nagata, and T. Moritani, J. Polym. Sci. Polym. Chem. Ed., 12, 1799 (1974).Google Scholar
  62. 60.
    J. R. Ebdon and N. P. Gabbott, Polymer 24, 565 (1983).Google Scholar
  63. 61.
    H. Hirai, K. Takeuchi, and M. Komiyama, J. Polym. Sci. Polym. Chem. Ed., 20, 159 (1982).Google Scholar
  64. 62.
    Y. Koma, S. Kondo, and K. Iimura, J. Polym. Sci. Polym. Lett Ed., 12, 153 (1974).Google Scholar
  65. 63.
    H. Haraguchi and S. Fujiwara, J. Phys. Chem., 73, 3467 (1969).Google Scholar
  66. 64.
    K. Fujimori and G. B. Butler, J. Macromol. Sci. Chem., A-7, 387 (1973).Google Scholar
  67. 65.
    J. Furukawa, Y. Iseda, and E. Kobayashi, Polym. J., 2, 337 (1971).Google Scholar
  68. 66.
    H. Hirai, J. Macromol. Sci. Chem., A9, 883 (1975).Google Scholar
  69. 67.
    H. Hirai and M. Komiyama, J. Polym. Sci. Polym. Chem. Ed., 13, 2419 (1975).Google Scholar
  70. 68.
    M. Komiyama and H. Hirai, J. Polym. Sci. Polym. Chem. Ed., 14, 307 (1976).Google Scholar
  71. 69.
    H. Hirai, M. Komiyama, and N. Toshima, J. Polym. Sci. Polym. Lett. Ed., 9, 789 (1971).Google Scholar
  72. 70.
    M. Komiyama and H. Hirai, J. Polym. Sci. Polym. Chem. Ed., 14, 627 (1976).Google Scholar
  73. 71.
    M. Komiyama and H. Hirai, J. Polym. Sci. Polym. Chem. Ed., 14, 2009 (1976).Google Scholar
  74. 72.
    M. H. Litt and J. Wellinghoff, J. Phys. Chem., 81 (26), 2644 (1977).Google Scholar
  75. 73.
    J. Furukawa, E. Kobayashi, and Y. Iseda, J. Polym. Sci., B8, 47 (1970).Google Scholar
  76. 74.
    J. Furukawa, E. Kobayashi, Y. Iseda, and Y. Arai, J. Polym. Sci., B9, 179 (1971).Google Scholar
  77. 75.
    J. Furukawa, E. Kobayashi, K. Haga, and Y. Iseda, Polym. J., 2, 475 (1971).Google Scholar
  78. 76.
    J. Furukawa, E. Kobayashi, and Y. Arai, J. Polym. Sci., B9, 805 (1971).Google Scholar
  79. 77.
    J. M. Judge and C. C. Price, J. Polym. Sci., 41, 435 (1959).Google Scholar
  80. 78.
    C. H. Bamford and M. Hirooka, Polymer (1984), in course of publication.Google Scholar
  81. 79.
    C. H. Bamford, S. N. Basahel, and P. J. Malley, Pure Appl. Chem., 52, 1837 (1980).Google Scholar
  82. 80.
    C. H. Bamford, X-Z. Han, and P. J. Malley, Plaste Kautsch., 293, 137 (1982).Google Scholar
  83. 81.
    C. H. Bamford and P. J. Malley, J. Chem. Soc. Farad. Trans. 78, 2497 (1982).Google Scholar
  84. 82.
    C. H. Bamford, Organometallic Derivatives of Transition Metals as Initiators of Free-Radical Polymerization, In: Reactivity, Mechanism and Structure in Polymer Chemistry ( A. D. Jenkins and A. Ledwith, eds.), John Wiley and Sons, London (1974), pp. 52–116.Google Scholar
  85. 83.
    C. H. Bamford, R. W. Dyson, and G. C. Eastmond, Polymer, 10, 885 (1969).Google Scholar
  86. 84.
    P. J. Malley, thesis, University of Liverpool, England (1981).Google Scholar
  87. 85.
    A. M. North, The Influence of Chain Structure on the Free-Radical Termination Reaction, In: Reactivity, Mechanism and Structure in Polymer Chemistry ( A. D. Jenkins and A. Ledwith, eds.), John Wiley and Sons, London (1974), pp. 142–157.Google Scholar
  88. 86.
    A. M. North and D. Postlethwaite, Polymer, 5, 237 (1964).Google Scholar
  89. 87.
    K. F. O’Driscoll, Pure Appl. Chem., 53, 617 (1981).Google Scholar
  90. 88.
    C. H. Bamford and S. N. Basahel, J. Chem. Soc. Farad. 76, 112 (1980).Google Scholar
  91. 89.
    V. B. Golubev, V. P. Zubov, G. S. Georgiev, I. L. Stoyachenko, and V. A. Kabanov, J. Polym. Sci. Polym. Chem. Ed., 11, 2463 (1973).Google Scholar
  92. 90.
    V. P. Zubov, M. B. Lachinov, E. V. Ignatova, G. S. Georgiev, V. B. Golubev, and V. A. Kabanov, J. Polym. Sci. Polym. Chem. Ed., 20, 619 (1982)Google Scholar
  93. Ye. V. Ignatova, G. S. Georgiev, M. B. Lachinov, V. P. Zubov, and V. A. Kabanov, Polym. Sci. USSR, 239, 2174 (1981).Google Scholar
  94. 91.
    Ye. V. Ignatova, M. B. Lachinov, V. P. Zubov, Ye. S. Garina, and V. A. Kabanov, Polym. Sci. USSR, 2212, 3057 (1980).Google Scholar
  95. 92.
    J. Furukawa, J. Macromol. Sci. Chem. 9 (6), 867 (1975).Google Scholar
  96. 93.
    U.S. Pat. 3,629,215 (1971) and U.S. Pat. 3, 894, 997 ( 1975 ), K. Nakaguchi, S. Kawasumi, M. Hirooka, H. Yabuuchi, and H. Takao.Google Scholar
  97. 94.
    H. Hirai and K. Takeuchi, Makromol. Chem. Rapid Commun., 1, 541 (1980).Google Scholar
  98. 95.
    H. Hirai, K. Takeuchi, and M. Komiyama, J. Polym. Sci. Polym. Chem. Ed. 19, 2581 (1981).Google Scholar
  99. 96.
    J. Furukawa, paper presented at 17th Annual Meeting of the Society of Polymer Science, Japan 25A19 (1968).Google Scholar
  100. 97.
    J. Furukawa and Y. Iseda, J. Polym. Sci., B7, 47 (1969).Google Scholar
  101. 98.
    J. Furukawa, Y. Iseda, K. Haga, and N. Kataoka, J. Polym. Sci. Al, 8, 1147 (1970).Google Scholar
  102. 99.
    J. Furukawa, Y. Iseda, K. Haga, N. Kataoka, T. Yoshimoto, T. Imamura, Y. Shido, A. Miyagi, T. Tanaka, and K. Sakamoto, J. Polym. Sci. B7, 561 (1969).Google Scholar
  103. 100.
    J. Furukawa, E. Kobayashi, Y. Iseda, and Y. Arai, Polym. J., 1, 442 (1970).Google Scholar
  104. 101.
    J. Furukawa, E. Kobayashi, and Y. Iseda, Polym. J., 1, 155 (1970).Google Scholar
  105. 102.
    J. Furukawa, J. Macromol. Sci. Chem., A9(6), 867 (1975).Google Scholar
  106. 103.
    C. H. Bamford and X-z. Han, J. Chem. Soc. Faraday Trans., 78, 855 (1982).Google Scholar
  107. 104.
    C. H. Bamford and X-z. Han, J. Chem. Soc. Faraday Trans. 78, 869 (1982).Google Scholar
  108. 105.
    M. A. Golub and J. Heller, Tetrahedron Lett. 21, 37 (1963).Google Scholar
  109. 106.
    I. Kossler, M. Stolka, and K. Mach, J. Polym. Sci., C4, 977 (1964).Google Scholar
  110. 107.
    W. Kuran, S. Pasynkiewicz, R. Nadir, and B. Kowalewska, Makromol. Chem., 177, 1293 (1976).Google Scholar
  111. 108.
    C. H. Bamford and X-z. Han, Polymer, 22, 1299 (1981).Google Scholar
  112. 109.
    J. R. Ebdon, J. Macromol. Sci. Chem., A8, 417 (1974).Google Scholar
  113. 110.
    A. Akimoto and M. Ohtsuru, J. Polym. Sci. Polym. Chem. Ed., 13, 549 (1975).Google Scholar
  114. 111.
    F. A. Blouin, R. C. Chang, M. H. Quinn, and H. J. Harwood, Polym. Prepr. Am. Chem. Soc., 14, 25 (1973).Google Scholar
  115. 112.
    R. C. Chang and H. J. Harwood, Polym. Prepr. Am. Chem. Soc., 14, 31 (1973).Google Scholar
  116. 113.
    G. A. Lindsay, E. R. Santee Jr., and H. J. Harwood, Polym. Prepr. Am. Chem. Soc., 14, 646 (1973).Google Scholar
  117. 114.
    I. Kuntz and N. F. Chamberlain, J. Polym. Sci. Polym. Chem. Ed., 12, 1695 (1974).Google Scholar
  118. 115.
    K. Yokota and T. Hirabayashi, J. Polym. Sci. Polym. Chem. Ed., 14, 57 (1976).Google Scholar
  119. 116.
    H. Hirai, T. Tanabe, and H. Koinuma, J. Polym. Sci. Polym. Chem. Ed., 17, 843 (1979).Google Scholar
  120. 117.
    H. Hirai, H. Koinuma, T. Tanabe, and K. Takeuchi, J. Polym. Sci. Polym. Chem. Ed., 17, 1339 (1979).Google Scholar
  121. 118.
    H. Hirai, T. Tanabe, and H. Koinuma, J. Polym. Sci. Polym. Chem. Ed., 18, 203 (1980).Google Scholar
  122. 119.
    H. Matsuo, Y. Inoue, and R. Chujo, Polymer Prepr. Jpn, 23, 777 (1977).Google Scholar
  123. 120.
    M. K. Niknam, R. N. Majumdar, F. A. Blouin, and H. J. Harwood, MakromoL Chem. Rapid Commun., 3, 825 (1982).Google Scholar
  124. 121.
    S. I. Kuchanov, S. V. Korolev, V. P. Zubov, and V. A. Kabanov, Polymer, 25, 100 (1984).Google Scholar
  125. 122.
    W. Kuran, S. Pasynkiewicz, and R. Nadir, Makromol. Chem., 178, 411 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Clement H. Bamford
    • 1
  1. 1.Bioengineering and Medical Physics UnitUniversity of LiverpoolLiverpoolUK

Personalised recommendations