Air Pollution pp 101-128 | Cite as

Fundamentals for the Application of a Gaussian Plume Model

  • Erich Weber
Part of the NATO · Challenges of Modern Society book series (NATS, volume 2)


The purpose of this document is to give information on the capabilities, applicability and limitations of a special deterministic model to calculate ambient air pollution concentrations, the Gaussian plume model. This model utilizes an emissions inventory, meteorological parameters, and equations which describe mathematically the physical process of turbulent transport of air pollutants in the lower atmosphere to calculate concentrations.


Wind Speed Area Source Diffusion Parameter Receptor Point Plume Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Manier, G., W. Benesch Temperatur- und Windmessungen an Türmen, Teil V and VI. Abschlußbericht zum Forschungsvorhaben des Bundesministers des Innern: Auswertung meteorologischer Meßdaten für die Ausbreitungsrechnung (1968)(Measurements of Temperature and Wind at Towers, Part V and VI. Final Report of the Research Program of the Federal Ministry of the Interior: Evaluation of Meteorological Data for Dispersion Calculations)Google Scholar
  2. /2/.
    Manier, G. Die Abhängingkeit des Windprofilexponenten von der Turnersehen Ausbreitungsklasse. (The Dependence of the Wind Profile Exponent upon Turner’s Turbulence Classes) Met. Rdschau 21 (1968) p. 43Google Scholar
  3. /3/.
    Gifford, F.A. An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere in: Slade, D.H. (ed.) Meteorology and Atomic Energy 1968CrossRefGoogle Scholar
  4. /4/.
    Smith, M.E. and J.A. Singer An Improved Method of Estimating Concentrations and Related Phenomena from a Point Source Emission. J. Appl. Met. 5, (1966), 631CrossRefGoogle Scholar
  5. /5/.
    Pasquill, F. Atmospheric Diffusion 2nd ed. John, Wiley and Sons (1974)Google Scholar
  6. /6/.
    Klug, W. Ein Verfahren zur Bestimmung der Ausbreitungsbedingungen aus synoptischen Beobachtungen. (A Method für the Determination of Diffusion Conditions from Synoptical Observations) Staub 29 (1969) 143.Google Scholar
  7. /7/.
    Pasquill, F. The Estimation of the Dispersion of Windborne Material. Met. Mag. 90 (1961) 33Google Scholar
  8. /8/.
    Turner D.B. A Diffusion Model for an Urban Area. J. Appl. Met. 3 (1964) 83CrossRefGoogle Scholar
  9. /9/.
    Polster, G. Erfahrungen mit Strahlungs-, Temperaturgradient-und Windmessungen als Bestimmungsgrößen der Diffusionskate-gorien. (Experiences with Measurements of Radiation, Temperature Gradient and Wind for the Determination of Diffusion Categories). Met. Rdschau 22 (1969) 170Google Scholar
  10. /10/.
    Stewart, N.G., H.J. Gale and R.N. Crooks The Atmospheric Diffusion of Gases Discharged from the Chimney of the Harwell Reactor BEPO Int. J. Air Poll. 1 (1958) 87Google Scholar
  11. /11/.
    Barad, M.L. and D.A. Haugen, Eds. Project Prairie Grass. Geophys. Res. Paper 59 Vols. I, II and III. Air Force Cambridge Research Center, Bedford, Mass. (1958–59)Google Scholar
  12. /12/.
    Le Quinio, R.L. Operation Bourdon 1962, CEN Saclay (1962)Google Scholar
  13. /13/.
    Singer, J.A. and M.E. Smith Atmospheric Dispersion at Brookhaven Laboratory Int. J. Air Water Poll. 10 (1966) 125Google Scholar
  14. /14/.
    Mc Elroy, J.L. and F. Pooler St. Louis Dispersion Study, Vol II. Analysis U.S. Dep. of Health, Education and Welfare. National Air Pollution Control Administration, Arlington, Virg. (1968)Google Scholar
  15. /15/.
    Vogt, K.J. Empirical Investigation of the Diffusion of Waste Air Plumes in the Atmosphere. Nucl. Techn. 34 (1977) 43Google Scholar
  16. /16/.
    Nester, K. and P. Thomas in “Jahresbericht der Abteilung Strahlenschutz und Sicherheit 1978”, (Annual Report of the Department Nuclear Radiation Protection and Safety of the Nuclear Research Center Karlsruhe) KFK - Rep. 2775 (1979)Google Scholar
  17. /17/.
    Sutton, 0.G. Micrometeorology, Mc Graw Hill Book Company, New York (1953)Google Scholar
  18. /18/.
    /Hay, J.S. and F. Pasquill Diffusion from a Continuous Source in Relation to the Spectrum and Scale of Turbulence. Atm. Diff. and Air Poll. 6, Acad. Press, New York (1959)Google Scholar
  19. /19/.
    Meade, P.J. The Effect of Meteorological Factors on the Dispersion of Airborne Material. Atti del Congresso Scientifico, Sezione Nucleare (1959)107Google Scholar
  20. /20/.
    Jensen, K. Meteorological Measurements at Risö 1958–61, Risö Report, Atomenergiekommissionen, Denmark (1962)Google Scholar
  21. /21/.
    Bultynck, H. and L. Malet Evaluation of Atmospheric Dilution Factors for Effluents Diffused from an Evaluated Continuous Point Source. Tellus 24 (1972) 455CrossRefGoogle Scholar
  22. /22/.
    Reuter, H. Die Ausbreitungsbedingungen von Luftverunreinigungen in Abhängigkeit von meteorologischen Parametern (The Dispersion Conditions of Air Pollutants Depending on Meteorological Parameters) Arch. Met. Geoph. Biokl. A, 19 (1970) 173 and Verwendung synoptischer Beobachtungen zur Klassifikation der Ausbreitungsbedingungen bei nächtlichen Temperaturinversionen (The Usage of Synoptical Observations for Classifying the Dispersion Conditions during Nocturnal Tempe-rature Inversions). Publ. of “Lehrkanzel für Theoret. Meteorologie” Univ. Vienna (1972)Google Scholar
  23. /23/.
    Moses, H. and M.R. Kraimer Plume Rise Determination - A New Technique without Equations. J. Air Poll. Contr. Assoc. 22 (1972) 621.CrossRefGoogle Scholar
  24. /24/.
    Stern, A.C. Air Pollution, Third Edition Acad. Press (1976).Google Scholar
  25. /25/.
    Briggs, G.A. Plume Rise. AEC - Critical Review Series TID 25075, Division of Technical Information, US AEC (1969).Google Scholar
  26. /26/.
    Briggs, G.A. Some Recent Analysis of Plume Rise Observations. Proceed. 2nd Intern. Clean Air Congress 6. - 11. Dec. 1970 Acad. Press N. 9 (1971) 1029.Google Scholar
  27. /27/.
    Moses, H. and J.E. Carson Stack Design Parameter Influencing Plume Rise. J. Air Poll. Contr. Assoc. 18(1968) 454.CrossRefGoogle Scholar
  28. /28/.
    Holland, J.Z. A Meteorological Survey of the Oak Ridge Area, ORO-99, US Atomic Energy Commission.Google Scholar
  29. /29/.
    Stümke, H. Vorschlag einer empirischen Formel für die Schornsteinüberhöhung. (Suggestions for an Empirical Formula for Chimney Elevation.) Staub 23 (1963) 549.Google Scholar
  30. /30/.
    Stümke, H. Zur Berechnung der Aufstiegshöhe von Rauchfahnen (For Calculations of Plume Rise) VDI Forsch. Heft 483 (Ausg. B) 27 (1961) 38.Google Scholar
  31. /31/.
    Brummage, K.G. et al. The Calculation of Atmospheric Dispersion from a Stack. Stichting, Concawe, The Hague, The Netherlands (1966).Google Scholar
  32. /32/.
    ASME Guide Recommended Guide for the Prediction of the Dispersion of Airborne Effluents. The American Society of Mechanical Engineers, New York (1968).Google Scholar
  33. /33/.
    Carpenter, S.B. et al. Principal Plume Rise Dispersion Models/ TVA Power Plants. J. Air Poll. Contr. Assoc. 21 (1971) 491.CrossRefGoogle Scholar
  34. /34/.
    Montgomery, T.L. et al. Results of Recent TVA Investigations of Plume Rise J. Air Poll. Contr. Assoc. 22 (1972) 779.CrossRefGoogle Scholar
  35. /35/.
    Guldberg, P.H. A Comparison Study of Plume Rise Formulas Applied to Tall Stack Data. J. Appl. Met. 14 (1975) 1402Google Scholar
  36. /36/.
    Mancuso, R.L. and F.L. Ludwig User’s Manual for the APRAC - 1. An Urban Diffusion Model omputer Program. Stanford Research Institute, Menlo Park, CA. 94025 USA (1972).Google Scholar
  37. /37/.
    Turner, D.B. and W.B. Peterson A Gaussian Plume Algorithm for Point, Area and Line Sources. 6th NATO/CCMS–ITM Frankfurt/Germany (1975) see also EPA–600/4–78–013 (1978) Appendix A.Google Scholar
  38. /38/.
    Brubaker, K.L., P. Brown and R.R. Cirillo Addendum to User’s Guide for Climatological Dispersion Model EPA 450/3–77–015 (1977) p. 39 (Appendix A).Google Scholar
  39. /39/.
    Külske, S. Der Stand der Anwendungstechnik von mathematisch-meteorologischen Ausbreitungsmodellen in der Praxis der Luftreinhaltung (The Status of Applicability of Mathematical-Meteorological Diffusion Models in Air Pollution Management) LIS-Schriftenreihe 35 (1975) 69.Google Scholar
  40. /40/.
    Kretzschmar, J.G., G. de Baare and J. Vandervee Validation of the Immission Frequency Distribution Model in the Region of Antwerpen, Belgium. 7th NATO/MS ITM Aírlie House, Virginia, USA /1976/ see also Annex III Air Pollution (No. 51).Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Erich Weber
    • 1
  1. 1.Federal Ministry of the InteriorBonnFederal Republic of Germany

Personalised recommendations