Mixing Height Determination for Dispersion Modelling - A Test of Meteorological Pre-Processors

  • Frank Beyrich
  • Sven-Erik Gryning
  • Sylvain Joffre
  • Alix Rasmussen
  • Petra Seibert
  • Philippe Tercier
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)

Abstract

Concentrations of atmospheric trace constituents in the atmospheric boundary layer (ABL) are strongly affected by the meteorological conditions. One of the most important parameters to characterize the dispersion potential of the ABL is the mixing height (MH). In dispersion models, the MH is a key parameter needed to determine the turbulent domain in which dispersion takes place or as a scaling parameter to describe the vertical profiles of ABL-variables.

Keywords

Atmospheric Boundary Layer Dispersion Model Stable Boundary Layer Boundary Layer Height Slab Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carson, DJ., 1973, The development of a dry inversion-capped convectively unstable boundary layer. Quart. J. Roy. Meteoroi. Soc. 99:450.CrossRefGoogle Scholar
  2. Driedonks, A.G.M., 1981, Dynamics of the well-mixed atmospheric boundary layer. De Hilt: KNM1 Sci. Rep. WR 81-2, 189 pp.Google Scholar
  3. Gryning, S.E., and Batchvarova, E., 1990, Simple model of the daytime boundary layer height. Proc. 9th AMS Symp. Turb. & Diff., Roskilde: 379.Google Scholar
  4. Hanna, S.R., and Chang, J.C., 1991, Modification of the Hybrid Plume Dispersion Model (HPDM) for urban conditions and its evaluation using the Indianapolis data set. Report No. A089-1200, Electric Power Research Institute, 3412 Hillview Av., Palo Alto, CA 94303, USA.Google Scholar
  5. Karppinen, A., Joffre, S., and Vaajama, P., 1997, Boundary layer parametrization for Finnish regulatory dispersion models. International Journal of Environment and Pollution (in print).Google Scholar
  6. Mikkelsen, T., Thykier-Nielsen, S., Astrup, P., Jørgensen, H.E., Santabèrbara, J.M., Rasmussen, A., Sørcnscn, J. H., Robertson, L., Persson, C., Deme, S., Martens, R., Bartzis, J.G., Deligiannis, P., Catsaros, N., and Päsler-Sauer, J., 1996, The real-time on-line atmospheric dispersion module Met-Rodos. RODOS(WG2)-TN(96)08 (can be obtained from Risø National Laboratory, DK-4000 Roskilde). Monna, W.A.A., and van der Vliet, J.G., 1987, Facilities for research and weather observations on the 213 m tower at Cabauw and at remote locations. De Bilt: KNMI Sci. Rep. WR 87-5, 27pp.Google Scholar
  7. Nieuwstadt, F.T.M., 1981, The steady state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations. Boundary-Layer. Google Scholar
  8. Olesen, H.R., Jensen. A.B., and Brown, N., 1987, An operational procedure for mixing height estimation. Risø Nat. Lab. MST-Luft-A96. Last edition 1992, 182 pp.Google Scholar
  9. Stull, R.B., 1983a, A heat flux history length scale for the nocturnal boundary layer. Tellus 35A:219.CrossRefGoogle Scholar
  10. Stull, R.B., 1983b, Integral scales for the nocturnal boundary layer. Part I: Empirical depth relationships. J. Clim. Appl. Meteoroi. 22:673.CrossRefGoogle Scholar
  11. Weil, J.C., and Brower, R.P., 1983, Estimating convective boundary layer parameters for diffusion applications. Report PPSP-MP-48 Prepared by Environmental Center, Martin Marietta Corporation, for Maryland Department of Natural Resources, Armapolis, MD.Google Scholar
  12. Zililinkevich, S.S., 1972, On the determination of the height of the Ekman boundary layer. Boundary-Layer Meteoroi. 3:141.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Frank Beyrich
    • 1
  • Sven-Erik Gryning
    • 2
  • Sylvain Joffre
    • 3
  • Alix Rasmussen
    • 4
  • Petra Seibert
    • 5
  • Philippe Tercier
    • 6
  1. 1.Brandenburg Technical UniversityCottbusGermany
  2. 2.Risø National LaboratoryRoskildeDenmark
  3. 3.Finnish Meteorological InstituteHelsinkiFinland
  4. 4.Danish Meteorological InstituteCopenhagenDenmark
  5. 5.Institute of Meteorology and PhysicsUniversity of Agricultural SciencesViennaAustria
  6. 6.Swiss Meteorological InstitutePayerneSwitzerland

Personalised recommendations