Numerical Simulation of Meteorological Conditions for Peak Pollution in Paris

  • Bertrand C. Carissimo
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)


Increasingly, decisions taken for reducing urban pollution are based on some form of numerical modelling. Although the basic mechanisms for the formation of urban pollution are relatively well known, at least qualitatively, the evaluation of control strategies require accurate quantitative modelling of certain scenario, based on well documented past situations. This is the type of modelling that we will discuss here and which is quite different from the operational prediction of pollution conditions, for which the time constraint is crucial and the modelling usually simpler (and often statistical).


Ground Surface Temperature Pollution Episode Urban Pollution Paris Area Light Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumont B., A. Jaecker-Voirol. B. Martin, G. Toupance, 1996: Tests of Some Reduction Hypothesis Made in Photochemical Mechanisms, Atmos. Environ., 30, 12, 2061–2077CrossRefGoogle Scholar
  2. Buty D., J.Y. Caneill et B. Carissimo, 1988: Simulation de la couche limite atmosphérique en terrain complexe au moyen d’un modèle méso météorologique non hydrostatique: le code MERCURH. J. Mécanique Théorique et Appliquée, suppl. 2, 7, 35-62.Google Scholar
  3. Carissimo B. 1993: Revue des méthodes d’initialisation et de conduite aux limites possibles pour le code MERCURE. Rapport EDF/DER n° HE-33/93-024.Google Scholar
  4. Carissimo B., E. Dupont et O. Marchand, 1996: Local simulations of Land-sea Breeze cycles in Athens based on large-scale operational analyses. Atm. Env. 30, pp 2691–2704CrossRefGoogle Scholar
  5. Deardorff J.W., 1978: Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation. J. Geophys. Sc. 63. 1889–1903.CrossRefGoogle Scholar
  6. Dupont E., L. Menut, B. Carissimo, J. Pelon, R. Valentin and P. Flamant. 1997: The ECLAP Experiment: Observation of the diurnal evolution of the boundary layer in Paris and its rural suburbs. Submitted to Atm. Env.Google Scholar
  7. Dupont E., L. Musson-Genon, B. Carissimo, 1995: Simulation of the Paris Heat Island during two strong pollution Events. Air Pollution 95, Porto Carras. Proceedings (Volume III: Urban Pollution Edit. MM. Moussiopoulos, Power, Brebbia).Google Scholar
  8. Elkhalfi A. et B. Carissimo, 1993 Numerical simulations of a mountain wave observed during the “Pyrenees Experiment”: hydrostatic / non hydrostatic comparison and time evolution. Contrib. Atm. Phys. 66, 183–200.Google Scholar
  9. Garratt J.R., 1992: The Atmospheric Boundary Layer, Cambridge University Press.Google Scholar
  10. Guedalia D. and T. Bergot, 1994: Numerical forecasting fog. Part II: A comparison of model simulation with several observed fog events. Mon. Wea. Rev., 122, 1231–1246.CrossRefGoogle Scholar
  11. Jaecker-Voirol A., and alii, B. Carissimo, and alii. B. Aumont and alii: A 3D Regional Scale Photochemical Air Quality Model-Application to a 3 Day Summertime Episode Over Paris; Proceedings Air pollution 1996 Toulouse Google Scholar
  12. Lacis A. and J.E. Hansen 1974: A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere, J. Atmos. Sci., 31, 118–133.CrossRefGoogle Scholar
  13. Louis J.F., M. Tiedtke, J.F. Geleyn, 1982: A Short History of the PBL Parametrization at ECMWF. Proceedings, ECMWF workshop on planetary boundary layer parametrization, Reading, pp. 59-80.Google Scholar
  14. Louis J.F., 1979: A Parametric Model of Vertical Eddy Fluxes in The Atmosphere, Bound. Lay, Met., 17, pp. 187–202.CrossRefGoogle Scholar
  15. Moussiopoulos N., 1994: The EUMAC Zooming Model. EUROTRAC Report, Garmissch-Partenkirchen Moussiopoulos N., P. Sahm and Ch. Kessler, 1995: Numerical simulation of photochemical smog formation in Athens. Greece-A case study. Atm. Env. 24, 3619, 3632Google Scholar
  16. Musson Genon, L., 1986: Numerical simulation of fog with a one dimensional boundary layer model. Mon Wea. Rev., 115, 592–607CrossRefGoogle Scholar
  17. Musson Genon, L., 1995: Comparison of different simple turbulence closures with a one-dimensional boundary layer model. Mon. Wea. Rev., 123, p 163–180CrossRefGoogle Scholar
  18. Oke T.R., 1987: Boundary layer climates, Routledge, London and New YorkGoogle Scholar
  19. Pielke R. A. 1984: Mesoscale Meteorological modeling, Academic Press, New YorkGoogle Scholar
  20. Salles J., J. Janischewski, A. Jaecker-Voirol, B. Martin. 1996: Mobile Source Emission Inventory Model. Application to Paris Area. Atmos. Environ., 30, 12, 1965–1975CrossRefGoogle Scholar
  21. Sasamori T., 1968: The Radiative Cooling Calculation for Application to General Circulation Experiments, J. Appl. Met., 7, 721–729.CrossRefGoogle Scholar
  22. Stull R.B. 1988: An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library. Kluwer Academic Publishers.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bertrand C. Carissimo
    • 1
  1. 1.Direction des Etudes et RecherchesElectricité de FranceChatouFrance

Personalised recommendations