Development and Application of a Global to Local Model Hierarchy for the Determination of Chemical Processes in the Troposphere

  • Bärbel Langmann
  • Daniela Jacob
  • Ralf Podzun
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)


Computational resources usually limit the application of three-dimensional models for climate simulation as well as simulation of transport, chemical transformation and deposition of atmospheric gases and particles with respect to horizontal resolution. But many features contributing to regional climate patterns and processes involved in the transformation of atmospheric pollutants occur on spatial scales which cannot be resolved by current global or even regional models. One approach to regionalize coarse grid numerical results is the so called ‘nesting’ technique: large scale phenomena are simulated by coarse grid models and the results are used to provide boundary conditions for a high resolution mesoscale model simulation over the region of interest. Computational resources thus permit a higher resolution for the limited area model and, therefore, a more accurate description of topographie and turbulent processes in the planetary boundary layer. A first development and application of the nesting procedure to climate simulation is described in Dickinson et al. (1989), a first nested grid mesoscale atmospheric chemistry model has been presented by Pleim et al. (1991).


Regional Climate Model Horizontal Resolution Horizontal Grid Spacing Surface Ozone Concentration Rhine Valley 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang, J.S., Brost, R.A., Isaksen, I.S.A., Madronich, S., Middleton, P., Stockwell W.R., and Walcek, C.J. 1987, A three-dimensional eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res. 92:14681.CrossRefGoogle Scholar
  2. Christensen, J.H., Chnstensen, O.B., Lopez, P., van Meijgaard, E., and Botzet, M., 1996, The HIRHAM4 regional atmospheric climate model, Danish Meteorological Institute Scientific Report 96-4, Copenhagen.Google Scholar
  3. Dickinson, R.E., Errico, R.M., Giorgi, R, and Bates, G.T., 1989, A regional climate model for the western United States, Climate Change 15:383.Google Scholar
  4. Eppel, D.P., Kapitza, H., Claussen, M., Jacob, D., Koch, W., Levkov, L., Mengelkamp, H.-T., and Werrmann, N., 1995, The non-hydrostatic mesoscale model GESIMA. Part?: Parametenzations and applications, Contr. Atmosph. Phys. 68:15.Google Scholar
  5. Eppel, D.P, Mengelkamp, H.-T, Jacob, D., Kapitza, H., and Koch, W., 1992, Nonstationary 3-D simulation of air flow and pollutant transport in the coastal region of Northern Germany and the Øresund. in: Air Pollution Modeling and its Application IX, van Dop and Kallos, eds., Plenum Press, New York.Google Scholar
  6. Feichter, J., Kjellström, E., Rodhe, H., Dentener, F., Lelieveld, J., and Roelofs, G.J., 1996, Simulation or the tropospheric sulfur cycle in a global climate model, Atmos. Environ. 30:1693.CrossRefGoogle Scholar
  7. Hass, H., 1991, Description of the EURAD chemistry-transport-model version 2 (CTM2), Report 83, A. Ebel, F.M. Neubauer and P. Speth, ed., Institut für Geophysik und Meteorologie Universität zu Köln.Google Scholar
  8. Kapitza, H., and Eppel, D.P., 1992, The non-hydrostatic mesoscale model GESIMA. Part I: Dynamical equations and tests, Contr. Atmosph. Phys. 65:129.Google Scholar
  9. Jacob, D., and Podzun, R., 1997, Sensitivity studies with the regional climate model REMO, Meteorol. Atmos. Phys. in press.Google Scholar
  10. Karstens, U., Nolte-Hoiube, R., and Rockel, B., 1996, Calculation of the water budget over the Baltic Sea catchment area using the regional forecast model REMO for June 1993, Tellus 48A:648.Google Scholar
  11. Langmann, B., and Graf, H-F., 1997, The chemistry of the polluted atmosphere over Europe: Simulations and sensitivity studies with a regional chemistry-transport-model, accepted by Atmos. Environ. Google Scholar
  12. Langmann, B., Herzog, M., and Graf, H.-F., 1996, Radiative forcing of sulfate aerosols as determined in a regional circulation-chemistry transport model, submitted to Atmos. Environ. Google Scholar
  13. Madronich, S., 1987, Photodissociation in the atmosphere. I: Actinic flux and the effect of ground reflections and clouds. J. Geophys. Res. 92:9140.CrossRefGoogle Scholar
  14. Majewki, D., 1985, Balanced initial and boundary values for a limitea area model, Contr. Atmosph. Phys. 58:147.Google Scholar
  15. Majewski, D., 1991, The Europa Modell of the Deutscher Wetterdienst, Seminar Proceedings ECMWE, 2:147.Google Scholar
  16. Memmesheimer, M., Tippke, J., Ebel, A., Hass, H., Jakobs, H.J., and Laube, M., 1991, On the use of EMEP emission inventories for European scale air pollution modelling with the EURAD model, in: EMEP Workshop on Photooxidant Modelling for long-range Transport in Relation to Abatment Strategies, 16.–19. April 1991, Berlin.Google Scholar
  17. Pleim, J.E., Chang, J.S., and Zhang, K., 1991, A nested grid mesoscale atmospheric chemistry model, J. Geophys. Res. 96:3065.CrossRefGoogle Scholar
  18. Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M., Duemenil, L., Esch, M., Giorgetta, M., Schlese, U., Schulzweida, U., 1996, The atmospheric general ciculation model ECHAM-4: Model description and simulation of present-day climate, MPI Report No. 218, Sep. 1996, Hamburg.Google Scholar
  19. Roelofs, G.-J., and Lelieveld, J., 1995, Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model, J. Geophys. Res. 100:20983.CrossRefGoogle Scholar
  20. Steil, B., Dameris, M., Brühl, C., Crutzen, P.J., Grewe, V., Ponater, M., and Sausen, R., 1997. Development of a stratospheric chemistry module for GCM’s: First results of a multi-annual integration, submitted to Ann. Geophysical. Google Scholar
  21. Zimmermann, H., 1995, Field phase report of the TRACT field measurement campaign, EUROTRAC ISS Special Publication, Garmisch-Partenkirchen.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Bärbel Langmann
    • 1
  • Daniela Jacob
    • 1
  • Ralf Podzun
    • 2
  1. 1.Max-Planck-Institut für MeteorologieHamburgGermany
  2. 2.Deutsches KlimarechenzentrumHamburgGermany

Personalised recommendations