Modeling Size-Distributed Sea Salt Aerosols in the Atmosphere: An Application Using Canadian Climate Models

  • S. L. Gong
  • L. A. Barrie
  • J.-P. Blanchet
  • L. Spacek
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)


An algorithm for size-distributed atmospheric aerosols designed for the Northern Aerosol Regional Climate Model [NARCM] is applied to three versions of the Canadian climate models: GCM, RCM and FIZ-C/LCM. It incorporates the processes of aerosol generation, diffusive transport, transformation and removal as a function of particle size to simulate global and regional sea-salt aerosol spatial and temporal distributions. A comparison was made between observations and model predictions of sea-salt. Size-resolved aerosol properties such as transport patterns, fluxes and removals are obtained from the simulations. Since the sea-salt generation term is relatively well quantified, the comparison ensures that a reasonable parameterization of removal and transport schemes is used.


Aerosol Concentration Surface Wind Speed Aerosol Generation Prognostic Equation Aerosol Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behnke, W., George, C., Scheer, V. and Zetzsch, C. (1997), Production and decay of CINO2 from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res., 102(D3), 3795–3804.CrossRefGoogle Scholar
  2. Exton, H.J., Latham, J., Park, P.M., Smith, M.H. and Allan R.R. (1986), The production and dispersal of maritime aerosol, in Oceanic Whitecaps, E.G. Monahan and G. Mac Niocaill (eds.), D. Redeil Publishing, Dordrecht, Holland, 175-193.Google Scholar
  3. Fitzgerald J.M. (1992), Numerical simulation of the evolution of the aerosol size distribution in a remote marine boundary layer, in Nucleation and Atmospheric Aerosols, Fukuta and Wagner (eds.), 157-160.Google Scholar
  4. Gong, S.L, Barrie, L.A., and Blanchet, J.-P. (1997a), Modeling Sea-salt Aerosols in the Atmosphere — I, Model Development, J. Geophys. Res., 102(D3), 3805–3818.CrossRefGoogle Scholar
  5. Gong, S.L., Barrie, L.A., Prospero, J.M., Savoie, D.L., Ayers, G.P., Blanchet, J.-P. and Lubos, S. (1997b), Modeling Sea-salt Aerosols in the Atmosphere — II, Atmospheric concentrations and fluxes, J. Geophys. Res., 102(D3), 3819–3830.CrossRefGoogle Scholar
  6. Gras, J.L. and Ayers, G.P. (1983), Marine aerosol at southern mid-latitudes, J. Geophys. Res., 88, 10661–10666.CrossRefGoogle Scholar
  7. Jobson, B.T., Niki, H., Yokouchi, Y., Bottenheim, J., Hopper, F. and Leaitch R. (1994), Measurements of C2-C6 hydrocarbons during the Polar Sunrise 1992 Experiment: Evidence for Cl atom and Br atom chemistry, J. Geophys. Res., 99(D12), 25355–25368.CrossRefGoogle Scholar
  8. Kulkarni, M.R., Adiga, B.B., Kapoor, R.K. and Shirvaikar V.V. (1982), Sea salt in coastal air and its deposition on porcelain insulators, J. Appl. Meteor, 21, 350–355.CrossRefGoogle Scholar
  9. Lovett, R.F. (1978), Quantitative measurement of airborne sea-salt in the North Atlantic. Tellus, 30, 358–363.CrossRefGoogle Scholar
  10. Marks, R. (1990), Preliminary investigation on the influence of rain on the production, concentration, and vertical distribution of sea salt aerosol, J. Geophys. Res., 95(C12), 22299–22304.CrossRefGoogle Scholar
  11. McFarlane, N.A., Boer, G.J., Blanchet, J.-P. and Lazare, M. (1992), The Canadian climate centre second-generation general circulation model ant its equilibrium climate, J. Climate, 5, 1013, 1044.CrossRefGoogle Scholar
  12. Monahan, E.C., Spiel, D.E. and Davidson, K.L. (1986), A model of marine aerosol generation via whitecaps and wave disruption, in Oceanic Whitecaps, Monahan and Mac Niocaill (eds.), 167-174.Google Scholar
  13. Mozurkewich, M. (1995), Mechanisms for the release of halogens from sea salt particles by free radical reactions, J. Geophys. Res., 100(D7), 14199–14207.CrossRefGoogle Scholar
  14. Patterson, D.E. and Husar, R.B. (1981), A direct simulation of hemispherical transport of pollutants, Atmospheric Environment, 15(8), 1479–1482.CrossRefGoogle Scholar
  15. Robert, A. (1966). The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, Ser. 2, 44, 237-245.Google Scholar
  16. Robert, A., Yee, T.L. and Ritchie H. (1985). A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models. Mon. Wea. Rev., 133, 388–394.CrossRefGoogle Scholar
  17. Stramska, M. (1987), Vertical profiles of sea-salt aerosol in the atmospheric surface layer: A numerical model, ACTA Geophysica Polonica, Vol. xxxv (1).Google Scholar
  18. Therrien, D. (1993), Le modèle de circulation générale atmosphérique Canadien en version colomne: FIZ-C, MSc Thesis, University of Quebec at Montreal, 123pp.Google Scholar
  19. Woodcock, A.H. (1953), Salt nuclei in marine air as a function of altitude and wind force,. J. Met., 10, 362–371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. L. Gong
    • 1
  • L. A. Barrie
    • 1
  • J.-P. Blanchet
    • 2
  • L. Spacek
    • 2
  1. 1.Atmospheric Environment ServiceDownsviewCanada
  2. 2.Earth Sciences DepartmentUniversity of Quebec at Montreal (UQAM)MontrealCanada

Personalised recommendations