Influence of the Resolution of Emissions and Topography on the Air Pollution Distribution in a Mesoscale Area

  • Klaus Nester
  • Hans-Jürgen Panitz
  • Franz Fiedler
  • Walburga Wilms
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)

Abstract

The air pollution in a region is influenced by all atmospheric scales. Because it is not possible to resolve all scales in a single model, different models have been developed which describe the air pollution in certain regions, like the European scale model EURAD (EURopean Acid Deposition model (Ebel et al., 1989)) and the mesoscale model system KAMM/DRAIS (KArlsruher Meteorologisches Modell (Adrian and Fiedler, 1991)/DReidimensionales Ausbreitungs- und Immissions-Simulationsmodell (Schwartz, 1996)). Those effects which are smaller than the grid resolution of a model (subgrid effects) have to be considered by appropriate parameterizations or by nesting procedures. Effects resulting from scales which are even larger than the model domain are usually introduced into the model by the boundary conditions.

Keywords

Ozone Concentration Geostrophic Wind Nest Procedure Mesoscale Model System Basic State Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, G., Fiedler, F., 1991, Simulation of unstationary wind and temperature fields over complex terrain and comparison with observations, Beitr. Phys. Atmos. 64, 27:48Google Scholar
  2. Bär, M., Nester, K., 1992, Parameterization of trace gas dry deposition velocities for a regional mesoscale diffusion model, Ann. Geophysicae 10, 912:923Google Scholar
  3. Degrazia, G. A., 1988, Anwendung von Ähnlichkeitsverfahren auf die turbulente Diffusion in der konvektiven und stabilen Grenzschicht, Dissertation am Institut für Meteorology und Klimaforschung, Universität Karlsruhe, 99 pp.Google Scholar
  4. Ebel, A., Neubauer, F. U., Raschke, E., Speth, P., 1989, Das EURAD Modell, Aufbau und erste Ergebnisse, Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität zu Köln Heft 61, 161 pp.Google Scholar
  5. Fiedler, F. et al., 1991, Transport und Umwandlung von Luftschadstoffen im Lande Baden-Württemberg und aus Anrainer Staaten (TULLA). Forschungsbericht KfK-PEF 88, 225 pp.Google Scholar
  6. Nester, K., Panitz, H.-J., Fiedler, F., 1995, Comparison of the DRAIS and EURAD Model Simulations of Air Pollution in a Mesoscale Area, Meteorol. Atmos. Phys. 57, 135:158CrossRefGoogle Scholar
  7. Schädler, G., Kalthoff, N., Fiedler, F., 1990, Validation of a model for heat, mass and monumenturn exchange over vegetated surfaces using LOTREX-10E/HIBE88 data, Contr. Phys. Atmosph. 63, 85:100Google Scholar
  8. Stockwell, W. R., Middleton, P., Chang, J. S., 1990, The second generation Regional Acid Deposition Model; chemical mechanism for regional air quality modelling, J. Geophys. Res. 95, 16, 343:16, 367CrossRefGoogle Scholar
  9. Schwartz, A., 1996, Numerische Simulationen zur Massenbilanz chemisch reaktiver Substanzen im mesoskaligen Bereich, Dissertation am Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 200 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Klaus Nester
    • 1
  • Hans-Jürgen Panitz
    • 1
  • Franz Fiedler
    • 1
  • Walburga Wilms
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungForschungszentrum Karlsruhe/Universität KarlsruheKarlsruheGermany

Personalised recommendations