Initialization of the Euler Model ‘Modis’ with Field Data from the ‘Epri Plume Model Validation Project’

  • G. Petersen
  • D. Eppel
  • M. Lautenschlager
  • A. Müller
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)


In recent years numerical modelling of pollutant dispersion has resulted in several computer codes for many applications on various time and space scales. The program deck MODIS (“MOment Distribution”) is designed to be used as operational tool for modelling the dispersion of a point source under general atmospheric conditions. The concentration distribution is determined by calculating its cross-wind moments on a vertical numerical grid oriented in the main wind direction.


Wind Shear Inversion Layer Root Mean Square Velocity Pollutant Dispersion Horizontal Grid Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lautenschlager, M., Parametrisierung der turbulenten Diffusion in der Atmosphäre unter Benutzung der turbulenten Energiegleichung, Ext. Report, GKSS 83/E/60, 1983.Google Scholar
  2. 2.
    see e.g.: Saffman, P.G., The effect of wind shear on horizontal spread from an instantaneous ground source, Quart. J. Roy. Met. Soc. 88 (1962) 382–393.CrossRefGoogle Scholar
  3. Gee, J.H., D.R. Davis, A note on horizontal dispersion from an instantaneous ground source, Quart. J. Roy. Met. Soc. 89 (1963) 542–545.CrossRefGoogle Scholar
  4. Kao, S.K., J.C. Doran, Turbulent diffusion in linear shear flow, Pageoph. 114 (1976) 357–363.CrossRefGoogle Scholar
  5. Manton, M.J., On the dispersion of particles in the atmosphere, Boundary Lay. Met. 17 (1979) 145–165.CrossRefGoogle Scholar
  6. Mulholland, M., Simulation of tracer experiments using a numerical model for point sources in a sheared atmosphere, Atmos. Env. 14 (1980) 1347–1360.CrossRefGoogle Scholar
  7. 3.
    Eppel, D., J. Häuser, A. Müller, Three-dimensional simulation model for the propagation of air pollutants, 5th Int. Clean Air Congress, Oct. 20 – 26, 1980, Buenos Aires.Google Scholar
  8. Eppel, D., J. Häuser, H. Lohse, F. Tanzer, Pollutant dispersion in the Ekman layer using moment-reduced transport equations in: C. de Wispelaere, (Ed.), Air Pollution Modelling and its Applicat. II, Plenum Publ. Company 1983.Google Scholar
  9. 4.
    Mellor G.L., T. Yamada, Development of turbulence closure models for geophysical fluid problems, Revs. Geoph. and Space Phys. 20 (1982) 851–875.CrossRefGoogle Scholar
  10. 5.
    Zilitinkevitch, S.S., D.L. Laikhtman, A.S. Monin, Dynamics of the atmospheric boundary layer, Izv. Atmosph. and Oceanic Physics 3,3 (1967) 170–191.Google Scholar
  11. 6.
    Businger, J.A., J.C. Wyngaard, Y. Izumi, E.F. Bradley, Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci. 33 (1971) 181–189.CrossRefGoogle Scholar
  12. 7.
    Schatzmann, M., An integral model of plume rise, Atmos. Environ. 13 (1979) 721–731.CrossRefGoogle Scholar
  13. 8.
    Second-order closure exercise for the Kincaid power plant plume, EPRI EA-3079, Project 1616–9, Final Report, July 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • G. Petersen
    • 1
  • D. Eppel
    • 1
  • M. Lautenschlager
    • 1
  • A. Müller
    • 1
  1. 1.Institut für PhysikGKSS-Forschungszentrum GeesthachtGeesthachtGermany

Personalised recommendations