Determination of the Relations Governing the Evolution of the Standard Deviations of the Distribution of Pollution

  • Bernard Crabol
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)


Gaussian models for the prediction of atmospheric transfer require the knowledge of experimental input data which are the standard-deviations of the diffusion of pollution. Different evolution laws of the standard deviations found in the literature are, according to the authors, a function of the travel distance1 or the travel time2,3 of the pollutant.


Wind Speed Travel Time Travel Distance Scale Turbulence Laboratory Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Pasquill, “Atmospheric Diffusion (second edition),” Ellis Horwood (1974).Google Scholar
  2. 2.
    K.D. Hage et al, Particle fallout and dispersion in the atmosphere, Final Report, Sandia Corporation SC-CR-66–2031 (1966).Google Scholar
  3. 3.
    A. Doury, Une méthode de calcul pratique et générale pour la prévision numérique des pollutions véhiculées par l’atmosphère, Rapport CEA-R-4280 (Rév. 1), (1976).Google Scholar
  4. 4.
    G.I. Taylor, Diffusion by continuous movements, Proce. London Math. Soc. Ser., 2, 20, (1921).Google Scholar
  5. 5.
    F.B. Smith and J.S. Hay, The expansion of clusters of particles in the atmosphere, Quart. J. Roy Met. Soc. 87, page 82, (1961).CrossRefGoogle Scholar
  6. 6.
    J.S. Hay and F. Pasquill, Diffusion in continuous sources in relation to the spectrum and scale of turbulence, Advances in Geophysics, 6, 345, (1959).CrossRefGoogle Scholar
  7. 7.
    Y. Ogura, The influence of finite observations intervals on the measurement of turbulent diffusion parameters, Journal of Meteorology, Vol. 14, page 176, (1957).CrossRefGoogle Scholar
  8. 8.
    I. Van Der Hoven, Power spectrum of horizontal wind speed in the frequency range from 0,0007 to 900 cycles per hour, J. Meteorol. 14, p. 160, (1957).CrossRefGoogle Scholar
  9. 9.
    A. Fortier, “Mécanique des fluides et transferts de chaleur et de masse par convection,” Masson (1975).Google Scholar
  10. 10.
    J.R. Philips, Relation between Eulerian and Lagrangian Statistics, The physics of Fluid supplement, p. 69–71, (1967).Google Scholar
  11. 11.
    F.A. Gifford, An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere, Meteorology and Atomic Energy, U.S. Atomic Energy Commission, David H. Slade Editor, (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Bernard Crabol
    • 1
  1. 1.Institut de Protection et de Sûreté NucléaireCentre d’Etudes Nucléaires de Fontenay-aux-RosesFontenay-aux-RosesFrance

Personalised recommendations