Parameterization of the Atmospheric Boundary Layer for Air Pollution Dispersion Models

  • A. A. M. Holtslag
  • S. E. Gryning
  • J. S. Irwin
  • B. Sivertsen
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)


Most of the gaseous pollutants that are emitted into the air are released into the Atmospheric Boundary Layer (ABL). The main characteristic of the ABL is turbulence. Turbulent flows have a wide range of length scales. The scales are bounded from above by the geometry of the flow field and from below by molecular effects. The structure of turbulence is determined by the various sources as well as by the imposed length and time scales. The turbulence in the ABL, therefore, is multifacet. The outstanding characteristic of turbulence is its immense ability to disperse and transport momentum, heat and also contaminants. Therefore the laws, that characterize the turbulence also characterize the atmospheric dispersion (Tennekes and Lumley, 1972; Pasquill and Smith, 1983).


Atmospheric Boundary Layer Convective Boundary Layer Wind Profile Stable Boundary Layer Atmospheric Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baerentsen, J.H., and Berkowicz, R., 1984, Monte Carlo simulation of plume dispersion in the convective boundary layer, Atmos. Environ., 18, 701:712.Google Scholar
  2. Barad, M.L., Ed., 1958, Project Prairie grass, a Field Program in diffusion. Geophys. Res. Rap. no. 59, Vols. 1 and 2, Geophysics Research Directorate. Air Force Cambridge Research Center, Bedford.Google Scholar
  3. Benkley, C.W. and Schulman L.L., 1979, Estimating hourly mixing depths from historical meteorological data, J. Appl. Meteor., 18, 772:780.Google Scholar
  4. Berkowicz, R. and Prahm, L.P., 1982, Evaluation of the profile method for estimation of surface fluxes of momentum and heat, Atmos. Environ., 16, 2809–2819.CrossRefGoogle Scholar
  5. Berkowicz, R., Baerentsen, J.H., Jensen, A.B., Markvorsen, J.S., Nielsen, J.B., Olesen, H.R., Prahm, L.P., 1983, An operational air pollution model, Proceed. 14th International Technical Meeting on air Pollutions Modeling and its Application, Copenhagen, sept. 27–30.Google Scholar
  6. Briggs, G.A., 1983, Diffusion modeling with convective scaling and effects of surface inhomogeneities, AMS Speciality Conference on Air Quality Modeling of the Urban Boundary Layer, 29 nov-2 dec, Baltimore.Google Scholar
  7. Businger, J.A., 1973, Turbulent transfer in the atmospheric surface layer, in: “Workshop on Micrometeorology”, D.A. Haugen, ed., Amer. Meteor. Soc, Boston, 67:100.Google Scholar
  8. Businger, J.A., Wyngaard, J.C., Izumi, Y., and Bradley, E.F., 1971, Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181:189.Google Scholar
  9. Carf, D.M., Tarbeil, T.C. and Panofsky, H.A., 1973, Profiles of Wind and Temperature from Towers over Homogeneous Terrain, J. Atmos. Sci., 30, 788:794.Google Scholar
  10. Caughey, S.J., 1982, Observed characteristics of the atmospheric boundary layer, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., D. Reidel Publishing Company, Dordrecht, 107:158.Google Scholar
  11. Davenport, A.G., 1960, Rationale for determining design wind velocities, J. Atm. Soc. Civ. Eng. (Struct. Div.), 86, 39:68.Google Scholar
  12. Deardorff, J.W., 1970, Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection, J. Atmos. Sci., 27, 1211:1213.Google Scholar
  13. Deardorff, J.W. and Willis, G.E., 1975, A parameterization of diffusion into the mixed layer, J. Appl. Meteor., 14, 1451:1458.Google Scholar
  14. Deardorff, J.W., Willis, G.E. and Stockton, B.H., 1980, Laboratory studies of the entrainment zone of a convectively mixed layer, J. Fluid Mech., 100, 41:46.Google Scholar
  15. Deardorff, J.W. and Willis, G.E., 1984, Ground level concentration fluctuations from a buoyant and a non-buoyant,source within a laboratory convectively mixed layer, Atmos. Environ., 18, 1297:1309.Google Scholar
  16. De Baas, A.F., Van Dop, H. and Nieuwstadt, F.T.M., 1985, An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer, Quart. J. Roy. Meteor. Soc. (accepted)Google Scholar
  17. De Bruin, H.A.R. and Holtslag, A.A.M., 1982, A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, J. Appl. Meteor,, 21, 1610–1621.CrossRefGoogle Scholar
  18. Draxler, R.R., 1976, Determination of atmospheric diffusion parameters, Atmos. Environ,, 10, 363:372.Google Scholar
  19. Driedonks, A.G.M., 1982, Models and observations of the growth of the atmospheric boundary layer, Bound.-Layer Meteorol., 23, 283:306.Google Scholar
  20. Driedonks, A.G.M., Van Dop, H. and Kohsiek, W., 1978, Meteorological Observations on the 213 Mast at Cabauw, in the Netherlands, Fourth Symposium on Meteorol. Obs, and Inst., April 10–14, Amer. Meteorol. Soc, 41:46.Google Scholar
  21. Driedonks, A.G.M. and Tennekes, H., 1984, Entrainment effects in the well-mixed atmospheric boundary layer. Boundary-Layer Meteor., 30, 75:105.Google Scholar
  22. Dyer, A.J., 1974, A review of flux-profile relationships, Bound.-Layer Meteorol. 7, 363:372.Google Scholar
  23. Garratt, J.R., Wyngaard, J.C. and Francey, R.J., 1982, Winds in the Atmospheric Boundary Layer — Prediction and Observation, J. Atm. Sci., 39, 1307:1316.Google Scholar
  24. Gryning, S.E., 1981, Elevated source SF6-tracer dispersion experiments in the Copenhagen area, Risø National Laboratory Report R-446, Roskilde, Denmark.Google Scholar
  25. Gryning, S.E., and Lyck, E., 1984, Atmospheric dispersion from elevated sources in an urban area: Comparison between tracer experiments and model calculations, J. Clim. Appl. Meteorol., 23, 651:660.Google Scholar
  26. Gryning, S.E., Lyck, E., and Hedegaard, K., 1978, Short-range diffusion experiments in unstable conditions over inhomogeneous terrain, Tellus, 30, 392:403.Google Scholar
  27. Gryning, S.E., Van Ulden, A.P. and Larsen, S., 1983, Dispersion from a continuous ground-level source investigation by a K model. Quart. J. Roy. Meteorol. Soc, 109, 355:364.Google Scholar
  28. Hanna, S.R., Briggs, G.A., Deardorff, J.W., Egan, B.A., Gifford, F.A., Pasquill, F., 1977, AMS Workshop on stability classification schemes and sigma curves-Summary of recommendations, Bull. Amer. Meteor. Soc.58, 1305:1309.Google Scholar
  29. Hicks, B.B., 1976, Wind Profile Relationships from the “Wangara” Experiment, Quart. J. R. Meteorol. Soc.102, 535:551.Google Scholar
  30. Hoffnagle, G., Smith, F., Smith, M.E., Crawford, T.V., and Lockhart, T.J., 1981, On-site meteorological instrumentation requirements to characterize diffusion from point sources — A workshop, 15–17 Jan., 1980, Raleigh, N.C., Bull. Amer. Met. Soc.62, 255:261.Google Scholar
  31. Højstrup, J., 1982, Velocity spectra in the unstable planetary boundary layer, J. Atmos. Sci.39, 2239:2248.Google Scholar
  32. Holtslag, A.A.M., 1984a, Estimates of vertical diffusion from sources near the ground in strongly unstable conditions, in: “Air Pollution Modeling and its Application III”, C. De Wispelaere, ed., Plenum Press, New York, 619:630.Google Scholar
  33. Holtslag, A.A.M., 1984b, Estimates of diabatic wind speed profiles from near surface weather observations, Bound.-Layer Meteorol.29, 225:250.Google Scholar
  34. Holtslag, A.A.M., and Van Ulden, A.P., 1983, A simple scheme for daytime estimates of the surface fluxes from routine weather data, J. Clim. Appl. Meteor., 22, 517:529.Google Scholar
  35. Holtslag, A.A.M., and Nieuwstadt, F.T.M., 1985, Scaling the atmospheric boundary layer J. Clim. Appl. Meteor, (submitted)Google Scholar
  36. Hunt, J.C.R., 1982, Diffusion in the stable boundary layer, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 231:274.Google Scholar
  37. Irwin, J.S., 1983, Estimating plume dispersion — A comparison of several sigma schemes, J. Clim. Appl. Meteorol., 22, 92:114.Google Scholar
  38. Irwin, J.S, Gryning, S.E., Holtslag, A.A.M., and Sivertsen, B., 1985, Atmospheric dispersion modeling based on boundary layer parameterization, US EPA report, to appear.Google Scholar
  39. Kretzschmar, J.G. and Mertens, I., 1984, Influence of the turbulence typing scheme upon the cumulative frequency distributions of the calculated relative concentrations for different averaging times, Atmos. Environ., 18, 2377:2393.Google Scholar
  40. Lamb, R.G., 1982, Diffusion in the convective boundary layer, in: “Atmospheric Tubulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel Publishing Company, Dordrecht, 159:230.Google Scholar
  41. Monin, A.S. and Yaglom, A.M., 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, 3th printing, MIT Press, London.Google Scholar
  42. Monteith, J.L., 1981, Evaporation and surface temperature, Quart. J. Roy. Meteor. Soc.107, 1:27.Google Scholar
  43. Nicholls, S., and Readings, C.J., 1979, Aircraft observations of the structure of the lower boundary over the sea, Quart. J. Roy. Meteorol. Soc, 105, 785:802.Google Scholar
  44. Nieuwstadt, F.T.M., 1980, Application of mixed-layer similarity to the observed dispersion from a ground-level source, J. of Appl. Meteorol., 19, 157:162.Google Scholar
  45. Nieuwstadt, F.T.M. and Van Ulden, A.P., 1978, A numerical study on the vertical dispersion of passive contaminants from a continuous source in the atmospheric boundary layer, Atmos. Environ., 12, 2119:2124.Google Scholar
  46. Nieuwstadt, F.T.M., 1984a, The turbulent structure of the stable, nocturnal boundary layer, J. Atm. Sci., 41, 2202:2216.Google Scholar
  47. Nieuwstadt, F.T.M., 1984b, Some aspects of the turbulent stable boundary layer, Boundary-Layer Meteorol., 30, 31:55.Google Scholar
  48. Olesen, H.R., Larsen, S.E. and Højstrup, J., 1984, Modeling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorol., 29, 285:312.Google Scholar
  49. Panofsky, H.A., 1978, Matching in the convective planetary boundary layer, J. Atmos. Sci., 272:276.Google Scholar
  50. Panofsky, H.A. and Dutton, J.A., 1984, “Atmospheric Turbulence, models and methods for engineering applications”, Wiley, New York.Google Scholar
  51. Pasquill, F. and Smith, F.B., 1983, “Atmospheric Diffusion”, 3th edition, John Wiley and Sons, London, 437 pp.Google Scholar
  52. Paulson, C.A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor., 9, 856:861.Google Scholar
  53. Pearson, H.J., Puttock, J.S., and Hunt, J.C.R., 1983, A statistical model of fluid element motions and vertical diffusion in a homogeneous stratified turbulent flow, J. Fluid Mech., 129, 219:249.Google Scholar
  54. Poreh, M. and Cermak, J.E., 1984, Windtunnel simulation of diffusion in a convective boundary layer, Boundary-Layer Meteorol., 30, 431:455.Google Scholar
  55. Sivertsen, B., 1978, Dispersion parameters determined from measurements of wind fluctuations (σθ), temperature and wind profiles. Proceedings of the 9th International Technical Meeting on Air Pollution and Its Application, Toronto, 251:261.Google Scholar
  56. Sutton, O.G., 1953, “Micrometeorology”, McGraw-Hill Book Company, New York.Google Scholar
  57. Sedifian, L. and Bennett, E., 1980, A comparison of turbulence classification schemes,Atmos Environ., 14, 741:750.Google Scholar
  58. Tennekes, H., 1970, Free convection in the turbulent Ekman layer of the atmosphere, J. Atmos. Sci., 27, 1027:1034.Google Scholar
  59. Tennekes, H., 1982, Similarity relations scaling laws and spectral dynamics, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 37:68.Google Scholar
  60. Tennekes, H., and Lumley, J.L., 1972, “A first course in Turbulence”, 5th printing 1978, MIT Press, Cambridge, Massachusetts, USA.Google Scholar
  61. Van Dop, H., Nieuwstadt, F.T.M. and Hunt, J.C.R., 1985, Random walk models for particle displacements in inhomogeneous unsteady turbulent flows, Physics of Fluids (accepted for publication).Google Scholar
  62. Van Duuren, H. and Nieuwstadt, F.T.M., 1980, Dispersion from the 213 m high meteorological mast at Cabauw in the Netherlands, in: “Studies in Environmental Science”, 8, Elsevier Amsterdam, 77:90.Google Scholar
  63. Van Ulden, A.P., 1978, Simple estimates of vertical diffusion from sources near the ground, Atmos. Environ., 12, 2121:2129.Google Scholar
  64. Van Ulden, A.P. and Holtsïag, A.A.M., 1983, The stability of the Atmospheric Surface Layer during nighttime, Sixth Symp. on Turbulence and Diffusion, March 22–25, Amer. Meteorol. Soc., Boston, 257:260.Google Scholar
  65. Van Ulden, A.P. and Holtslag, A.A.M., 1985, Estimation of Atmospheric boundary Layer Parameters for Diffusion Applications, J. Clim. Appl. Meteor, (accepted).Google Scholar
  66. Venkatram, A., 1980, Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations, Boundary-Layer Meteorol., 19, 481:485.Google Scholar
  67. Venkatram, A., 1984, The uncertainty in estimating dispersion in the convective boundary layer, Atmos. Environ., 18, 307:310.Google Scholar
  68. Venkatram, A., Strimaitis, D. and Discristofaro, D., 1984, A semi-empirical model to estimate vertical dispersion of elevated releases in the stable boundary layer, Atmos. Environ., 18, 923:928.Google Scholar
  69. Weil, J.C., 1983, Application of advances in planetary boundary layer understanding to diffusion modeling, Proceedings 6th symposium on Turbulence and Diffusion, March 22–25, Boston, AMS, 42:46.Google Scholar
  70. Wetzel, P., 1982, Toward parameterization of the stable boundary layer, J. Appl. Meteor., 21, 7:13.Google Scholar
  71. Wieringa, J., 1980, Representativeness of wind observations at airports, Bull. Amer. Meteor. Soc, 51, 962:971.Google Scholar
  72. Wieringa, J., 1981, Estimation of mesoscale and local-scale roughness for atmospheric transport modeling, in: 11th International Technical Meeting on Air Pollution Modeling and its Application, Plenum, New York.Google Scholar
  73. Wilczak, J.M. and Phillips, M.S., 1984, An indirect estimation of convective boundary layer structure for use in routine dispersion models, Proceedings 4th Joint Conference on Applications of Air Pollution Meteorology, Oct. 16–19, Portland, AMS, Boston.Google Scholar
  74. Willis, G.E., and Deardorff, J.W, 1978, A laboratory study of dispersion from an elevated source within a modeled convective mixed layer, Atmos. Environ., 12, 1305:1311.Google Scholar
  75. Wyngaard, J.C., 1982, Boundary Layer Modeling, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 159:230.Google Scholar
  76. Wyngaard, J.C., 1984, Toward convective boundary layer parameterization: A scalar transport module, J. Atmos. Sci., 41, 1959:1969.Google Scholar
  77. Wyngaard, J.C. and Brost, R.A., 1984, Top-down and bottom-up scalar diffusion in the convective boundary layer, J. Atmos. Sci., 41, 102:112.Google Scholar
  78. Zilitinkevich, S.S., 1972, On the determination of the height of the Ekman boundary layer, Bound.-Layer Meteorol.3, 141:145.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • A. A. M. Holtslag
    • 1
  • S. E. Gryning
    • 2
  • J. S. Irwin
    • 3
  • B. Sivertsen
    • 4
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Risø National LaboratoryRoskildeDenmark
  3. 3.Meteorology and Assessment Division, Atmospheric Sciences Research LaboratoryE.P.A.Research Triangle ParkUSA
  4. 4.Norwegian Institute for Air ResearchLillestrømNorway

Personalised recommendations