α, β-Unsaturated and Related Amino Acids in Peptides and Proteins

  • Erhard Gross
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)

Abstract

α, β-Unsaturated amino acids are potential precursors for the formation of crosslinkages in peptides and proteins. DEHYDROALANINE and DEHYDROBUTYRINE are constituents of NISIN (from Streptococcus lactis) and SUBTILIN (from Bacillus subtilis). Both peptides are crosslinked via sulfide bridges of no fewer than one residue of lanthionine and four residues of β-methyllanthionine presumably formed by the addition of the sulfhydryl group of cysteine residues across the double bond of dehydroalanine and dehydrobutyrine, respectively. CINNAMYCIN (from Streptomyces cinnamoneus) and DURAMYCIN (from Streptomyces cinnamoneus forma azacoluta) also display the crosslinking features of lanthionine and β-methyllanthionine. The reactive double bond of α, β-unsaturated amino acids is no longer seen in these two peptides. The presence of LYSINOALANINE in cinnamycin and duramycin establishes the imino bridge as a novel type of naturally occurring cross-linkage. The formation of the imino bridge is attributed to the addition of the ε-amino group of a lysine residue across the α, βunsaturation of dehydroalanine, a reaction that takes place in nisin, nisin fragments, and subtilin under controlled alkaline conditions. The crypticity of α, β-unsaturated amino acids constitutes a continued impediment to their easy analytical detection. A more broadly based role for α, β-unsaturated amino acids in the physiological environment must not be ruled out at the present time.

Keywords

Keto Acid Cyanogen Bromide Amino Acid Exchange Vide Supra Performic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderton, G. (1953). A new sulfur-containing amino acid from subtilin. J. Am. Chem. Soc. 75, 2391–2392.Google Scholar
  2. Benedict, R. G., Dvonch, W., Shotwell, 0. L., Pridham, T. G., and Lindenfelser, L. A., (1952). Cinnamycin, an Antibiotic from Streptomyces cinnamoneus Nov. Sp., Antibiotics and Chemotherapy 2, 591–594.Google Scholar
  3. Bohak, Z. (1964). EN-(DL-2-Amino-2-carboxyethyl)-L-lysine, a new amino acid formed on alkaline treatment of proteins. J. Biol. Chem. 239, 2878–2887.Google Scholar
  4. Dvonch, W., Shotwell, 0. L., Benedict, R. G., Pridham, T. G., and Lindenfelser, L. A., (1954). Further studies on cinnamycin, polypeptide antibiotic. Antibiotics and Chemotherapy 4, 1135–1142.Google Scholar
  5. George, D. J. and Phillips, A. T. (1970). Identification of aketobutyrate as the prosthetic group of urocanase from Pseudomonas putida. J. Biol. Chem. 245, 528–537.Google Scholar
  6. Givot, I. L., Smith, T. A., and Abeles, R. H. (1969). Studies on the mechanism of action and the structure of the electrophilic center of histidine ammonia lyase. J. Biol. Chem. 244, 63416353.Google Scholar
  7. Givot, I. L. and Abeles, R. H. (1970). Mammalian histidine ammonia lyase. In vivo inactivation and presence of an electrophilic center at the active site. J. Biol. Chem. 245, 3271–3273.Google Scholar
  8. Gross, E. (1966). The cyanogen bromide reaction. Methods in Enzymology. Enzyme Structure. Ed. C. H. W. Hirs, Academic Press, Inc., New York, New York. 11, 238–255.Google Scholar
  9. Gross, E. and Morell, J. L. (1967). The presence of dehydroalanine in the antibiotic nisin and its relationship to activity. J. Am. Chem. Soc. 89, 2791–2792.Google Scholar
  10. Gross, E. and Morell, J. L. (1968). The number and nature of a,β- unsaturated amino acids in nisin. FEBS Letters 2, 61–64.PubMedCrossRefGoogle Scholar
  11. Gross, E., Morell, J. L., and Craig, L. C. (1969). Dehydroalanyllysine: Identical COOH-terminal structures in the peptide antibiotics nisin and subtilin. Proc. Nat. Acad. Sci. 62, 952–956.Google Scholar
  12. Gross, E. and Morell, J. L. (1970). NISIN. The assignment of sulfide bridges of 8-methyllanthionine to a novel bicyclic structure of identical ring size. J. Am. Chem. Soc. 92, 2919–2920.Google Scholar
  13. Gross, E. and Morell, J. L. (1971). The structure of nisin. J. Am. Chem. Soc. 93, 4634–4635.Google Scholar
  14. Gross, E. and Kiltz, H. H. (1973). The number and nature of a,8-unsaturated amino acids in subtilin. Biochem. Biophys. Res. Commun. 50, 559–565.Google Scholar
  15. Gross, E., Kiltz, H. H., and Craig, L. C. (1973). Subtilin, II. Die Aminosaurezusammensetzung des Subtilins. Hoppe-Seyler’s Z. Physiol. Chem. 354, 799–801.Google Scholar
  16. Gross, E., Kiltz, H. H., and Nebelin, E. (1973). Subtilin, VI. Die Struktur des Subtilins. Hoppe Seyler’s Z. Physiol. Chem. 354, 810–812.Google Scholar
  17. Gross, E., Noda, K., and Nisula, B. (1973). Solid phase synthesis of peptides with carboxyl-terminal amides–thyrotropin releasing factor (TRF). Angew. Chem. Internat. Edit. 12, 664–665.Google Scholar
  18. Hanson, K. R. and Havier, E. A. (1970). L-Phenylalanine ammonia lyase, IV. Evidence that the prosthetic group contains a dehydroalanyl residue and mechanism of action. Arch. Biochim. Biophys. 141, 1 (1970).Google Scholar
  19. Kiltz, H. H. and Gross, E. (1973). Subtilin, III. Enzymatische Fragmentierung mit Trypsin und Thermolysin. Hoppe-Seyler’s Z. Physiol. Chem. 354, 802–804.Google Scholar
  20. Okuda, T. and Zahn, H. (1965). Synthese von £N-(2-amino-2-carboxyathyl)-L-Lysin, einer neuen Aminosaure aus alkalibehandelter Wolle. Chem. Ber. 98, 1164–1167.Google Scholar
  21. Patchornik, A. and Sokolovsky, M. (1964). Chemical interactions between lysine and dehydroalanine in modified bovine pancreatic ribonuclease. J. Am. Chem. Soc. 86, 1860–1861.Google Scholar
  22. Schultz, J. (1967). Cleavage at aspartic acid. Methods in Enzymology. Enzyme Structure. Ed. C. H. W. Hirs, Academic Press, Inc., New York, New York. 11, 255–263.Google Scholar
  23. Shotwell, 0. L., Stodola, F. H., Michael, W. R., Lindenfelser, L. A., Dworschack, R. G., and Pridham, T. G., (1958). Antibiotics against plant disease. III. Duramycin. A new antibiotic from Streptomyces cinnamoneus forma azacoluta. J. Am. Chem. Soc., 80, 3912–3915.Google Scholar
  24. Sternberg, M., Kim, C. Y., and Schwende, F. J. (1975). Lysinoalanine: Presence in foods and food ingredients. Science 190, 992–994.Google Scholar
  25. Wickner, R. B. (1969). Dehydroalanine in histidine ammonia lyase. J. Biol. Chem. 244, 6550–6552.Google Scholar
  26. Zahn, H. and Lumper, L. (1968). Die Bildung von Lanthionin und Lysinoalanin - Querbrucken bei der alkalischen Denaturierung von Rinderserumalbumin. Hoppe-Seyler’s Z. Physiol. Chem. 349, 77–84.Google Scholar
  27. Ziegler, K. (1964). New cross-links in alkali-treated wool. J. Biol. Chem. 239, PC2713–PC2714.Google Scholar
  28. Ziegler, K., Melchert, I., and Lubken, C. (1967). WN-(2-amino-2carboxyethyl)-ornithine, a new amino acid from alkali-treated proteins. Nature 214, 404–405.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Erhard Gross
    • 1
  1. 1.National Institutes of HealthBethesdaUSA

Personalised recommendations