Chemical Basis for Pharmacological and Therapeutic Actions of Penicillamine

  • Mendel Friedman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)


The pharmacological and therapeutic action of penicillamine are very largely explained by its ability to chelate metal ions and take part in oxidation-reduction reactions, sulfhydryldisulfide interchange, and nucleophilic addition. Effects of penicillamine on particular enzymes are explained by its chemical properties. Possible interactions with amino acids, tissue proteins, food constituents, and intermediates in the metabolism and biosynthesis of sulfur containing amino acids are discussed.


Schizophrenia Quinone Sulfoxide Lamine Schiff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, W. S. (1976). Formation and reactions of sulfenic acids in proteins. Accounts Chem. Res., 9, 293–299.Google Scholar
  2. Abe, M., Mizuno, A., Suda, T., Tornino, I. and Matsuda, M. (1973). Influence of penicillamine on phospholid metabolism. Vitamins (Japan), 47, 43–50.Google Scholar
  3. Abbott, E. H. and Martell, A. E. (1970). Pyridoxine and pyridoxal analogs. A nuclear magnetic resonance study of the condensation of polyfunctional amino acids with pyridoxal. J. Am. Chem. Soc., 92, 1754–1759.Google Scholar
  4. Aposhian, H. V. and Aposhian, M. M. (1959). N-Acetyl-DL-penicillamine, a new oral protective agent against the lethal effects of mercuric chloride. J. Pharmacol. Exptl.Therap., 126, 131–135.Google Scholar
  5. Augusti, K. T. (1974). Lipid lowering effect of allyl propyl disulphide isolated from Allium cepa Linn. on long term feeding to normal rats. Indian J. Biochem. Biophys., 11, 264–265.Google Scholar
  6. Augusti, K. T. and Mathew, P. T. (1974). Lipid lowering effect of allicin (diallyl disulphide-oxide) on long-term feeding to normal rats. Experientia, 30, 468–469.PubMedCrossRefGoogle Scholar
  7. Baker, D. H. (1976). Nutritional and metabolic interrelationships among sulfur compounds in avian nutrition. Fed. Proc., 35, 1917–1922.Google Scholar
  8. Bjorksten, J. (1977). Some therapeutic implications of the crosslinking theory of aging. This volume.Google Scholar
  9. Bloch, H. S., Prasad, A., Anastasi, A. and Briggs, D. R. (1960). Serum protein changes in Waldenstrom’s macroglobulinemia during administration of a low molecular weight thiol (penicillamine). J. Lab. Clin. Med., 56, 212–217.Google Scholar
  10. Blois, M. S. (1974). Melanocytic neoplams. Clin. Pharmacol.Therapeut., 16, 925–930.Google Scholar
  11. Boyd, T. R. C. (1968). The reaction between cyanide and the mixed disulfide of cysteine and penicillamine. J.Chem. Soc. (C), 2751–2753.Google Scholar
  12. Budzinski, E. E. and Box, H. C. (1971). The oxidation and reduction of organic compounds by ionizing radiation: Lpenicillamine hydrochloride. J. Phys. Chem., 75, 2564–2570.Google Scholar
  13. Carson, J. F. and Boggs, L. E. (1966). The synthesis and base-catalyzed cyclization of (+) and (-) cis-S-(1-propenyl)L-cysteine sulfoxides. J. Org. Chem., 31, 2862–2864.Google Scholar
  14. Cavins, J. F. and Friedman, M. (1970). Preparation and evaluation of S-ß-(4-pyridylethyl)-L-cysteine as an internal standard for amino acid analyses. Analyt. Biochem., 35, 489–493.Google Scholar
  15. Cavins, J. F. and Friedman, M. (1968). Specific modification of protein sulfhydryl groups with a, I3-unsaturated compounds. J. Biol. Chem., 243, 3357–3360.Google Scholar
  16. Cederbarum, A. I. and Rubin, E. (1976). Mechanism of the protective action of cysteine and penicillamine against acetaldehyde induced mitochondrial injury. Biochem. Pharmacol., 25, 2179–2185.Google Scholar
  17. Chauffe, L., Windle, J. J. and Friedman, M. (1975). Electron spin resonance study of melanin treated with reducing agents. Biophysical J., 15, 565–572.CrossRefGoogle Scholar
  18. Cockerill, A. F., Davies, G. L. O., Harrison, R. G. and Rackham, D. M. (1974). NMR determination of the enantio-Google Scholar
  19. mer composition of penicillamine using an optically active Europium shift reagent. Org. Magn. Res., 6, 669–670.Google Scholar
  20. Copeland, E. S. (1970). Production of free radicals in reduced glutathione and penicillamine by thermal hydrogen atoms and X-radiation. Int. J. Radiat. Biol., 16, 113–120.Google Scholar
  21. Cothern, C. R., Moddeman, W. E., Albridge, R. G., Sanders, W. J., Kelly, P. L., Hanley, W. S. and Field, L. (1976). Some bonding properties of D-penicillamine and related compounds measured by X-ray photoelectron spectroscopy.Anal. Chem., 48, 162–166.Google Scholar
  22. Crawhall, J. C. (1974). The uncommon disorders of sulfuramino acid metabolism. In “Heritable Disorders of Amino Acid Metabolism,” W. H. Nyham (Editor), John Wiley & Sons, Inc., p. 467–476.Google Scholar
  23. Crawhall, J. C. and Thompson, C. J. (1965). Cystinuria: effect of D-penicillamine on plasma and urinary cystine concentrations. Science, 147, 1459–1460.PubMedCrossRefGoogle Scholar
  24. Darrow, D. K. and Schroeder, H. A. (1974). Childhood exposure to environmental lead. In “Protein-Metal Interactions,”M. Friedman (Editor), Plenum, New York, pp. 425–445.CrossRefGoogle Scholar
  25. Datko, A., Giovanelli, J. and Mudd, H. S. (1975). Preparation of cystathionine sulfoxide and sulfone and some properties relating to their differentiation. Anal. Biochem,, 64, 80–84.Google Scholar
  26. Doornbos, D. A. and Feitsma, M. T. (1967). The acid strength of the sulfhydryl and ammonium groups in L-cysteine and Dpenicillamine: the determination of the micro acid stability constants. Pharm. Weekblad, 102, 587–598.Google Scholar
  27. Ekberg, M., Jeppsson, J. O. and Denneberg, T. (1974). Penicillamine treatment of cystinuria. Acta Med. Scand., 195, 415–419.Google Scholar
  28. Ercoli, N. (1968). Chemotherapeutic and toxicological properties of antimonyl tartrate-dimethylcysteine chelates. Proc. Soc. Expertl. Biol. Med., 129, 284–290.Google Scholar
  29. Field, L., Hanley, W. S., Kelly, P. L., Sanders, W. J., White, J. E., Jaffe, I. A. and Merryman, P. (1973). Further principles of structure activity relationships for penicillamine analogs and derivatives. J. Med. Chem., 16, 1152–1157.Google Scholar
  30. Fish, R. 1H. and Friedman, M. (1972). A novel mercuric chloride complex of S-ß-(2-pyridylethyl)-L-cysteine. J. Chem. Soc. Chem. Commun., 812.Google Scholar
  31. Freeman, H., Hug, F. and Stevens, G. N. (1976). Metal binding by D-penicillamine: crystal structure of D-penicillaminatocadmium (II) hydrate. J. Chem. Soc. Chem. Commun., 90–91.Google Scholar
  32. Friedman, M. (1977a). Crosslinking amino acids.stereochemistry and nomenclature. This volume.Google Scholar
  33. Friedman, M. (1977b). Effects of lysine group modification on chemical, physical, nutritive, and functional properties of proteins. In “Food Proteins,” J. R. Whitaker and S. R. Tannenbaum (Eds.), Avi, Westport, Connecticut.Google Scholar
  34. Friedman, M. (1975). Protein Nutritional Quality of Foods and Feeds. M. Friedman (Editor). Part 1: Assay Methods.Biological, Biochemical, Chemical. 626 + xx pages. Part 2: Quality Factors. Plant Breeding, Composition, Processing, Antinutrients. 676 + xx pages. Marcel Dekker, New York.Google Scholar
  35. Friedman, M. (1974). “Protein-Metal Interactions.” Advances in Experimental Medicine and Biology, M. Friedman (Edi- tor), Vol. 48, Plenum Press, New York, 692 + x pages.Google Scholar
  36. Friedman, M. (1973). “The Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins.” Permagon Press, Oxford England and Elmsford, New York, 485 + viii pages.Google Scholar
  37. Friedman, M. (1967). Solvent effects in reactions of amino groups in amino acids, peptides, and proteins with a, (3-unsaturated compounds. J. Am. Chem. Soc., 89, 4709–4713.Google Scholar
  38. Friedman, M. and Boyd, W. A. (1967). A nuclear magnetic double resonance study of N-ß-bis(ß-chloroethyl) phosphonylethyl-DL-phenylalanine. 154th Amer. Chem. Soc. Meeting, Chicago, Illinois (Abstracts p. C53 ).Google Scholar
  39. Friedman, M. and Krull, L. H. (1969). A novel spectrophotometric procedure for the determination of half-cystine residues in proteins. Biochem. Biophys. Res. Commun., 37, 630–633.Google Scholar
  40. Friedman, M. and Masri, M. S. (1974). Interactions of mercury compounds with wool and related biopolymers. In “Protein-Metal Interactions,” M. Friedman (Editor), Plenum Press, New York, pp. 505–550.Google Scholar
  41. Friedman, M. and Noma, A. T. (1970). Cystine content of wool. Text. Res. J., 40, 1073–1078.Google Scholar
  42. Friedman, M. and Romersberger, J. A. (1968). Relative influences of electron-withdrawing functional groups on basicities of amino acid derivatives. J. Org. Chem., 33, 154–157.Google Scholar
  43. Friedman, M. and Sigel, C. W. (1966). A kinetic study of the ninhydrin reaction. Biochemistry, 5, 478–484.PubMedCrossRefGoogle Scholar
  44. Friedman, M. and Tillin, S. (1974). Reactions of amino acid, peptides, and proteins with a,ß-unsaturated compounds. XXX. Partly-reduced-alkylated wool. Text. Res. J., 44, 578–580.Google Scholar
  45. Friedman, M. and Tillin, S. (1970). Flame-resistant wool. Text. Res. J., 40, 1045–1047.Google Scholar
  46. Friedman, M. and Waiss, A. J., Jr. (1972). Mercury uptake by selected agricultural products and byproducts. Environmental Science and Technology, 6, 457–458.CrossRefGoogle Scholar
  47. Friedman, M. and Wall, J. S. (1966). Additive linear free energy relationships in reaction kinetics of amino groups with cr,(3-unsaturated compounds. J. Org. Chem., 31, 2888–2894.Google Scholar
  48. Friedman, M. and Wall, J. S. (1964). Application of a Hammett-Taft relation to kinetics of alkylation of amino acid and peptide model compounds with acrylonitrile. J. Am. Chem. Soc., 86, 3735–3741.Google Scholar
  49. Friedman, M. and Williams, L. D. (1974). The ninhydrin reaction. VII. Stochiometry formation of Ruhemann’s purple in the ninhydrin reaction. Bioorg. Chem., 3, 267–280.Google Scholar
  50. Friedman, M., Cavins, J. F. and Wall, J. S. (1965). Relative nucleophilic reactivities of amino groups and mercaptide ions in addition reactions with a,ß-unsaturated compounds. J. Am. Chem. Soc., 87, 3572–3682.Google Scholar
  51. Friedman, M., Harrison, C. S., Ward, W. H. and Lundgren, H. P. (1973). Sorption behavior of mercuric and methyl-mercuric salts on wool. J. Appl. Polym. Sci., 17, 377–390.Google Scholar
  52. Friedman, M., Krull, L. H. and Cavins, J. F. (1970). The chromatographic determination of cysteine and half-cysteine residues in proteins as S-(3-(4-pyridylethyl) -L-cysteine. J. Biol. Chem., 245, 3868–3871.Google Scholar
  53. Friedman, M., Noma, A. T. and Masri, M. S. (1973). New internal standards for basic amino acid analyses. Analyt. Biochem., 51, 280–287.Google Scholar
  54. Gerber, D. A. (1972). Heat aggregation of human gamma globulin: inhibition by histidine, gold thiomalate, and penicillamine. Clin. Res., XX, 509 (Abstract).Google Scholar
  55. Hasenbank, G., Korber, F. and Siegmund, P. (1968). Uber die Raktionenen von D- und L-Penicillamin mit Alanintransaminase und mit einigen Aldiminen des Pyridoxalphosphats. Z. Physiol. Chem., 349, 310–316.Google Scholar
  56. Hayes, K. C. (197. A review of the biological function of taurine. Nutrition Reviews, 34, 161–165.Google Scholar
  57. Henkin, R. I. (1974). Metal-albumin acid interactions: chemical and physiological interrelationships. In “Protein-MetalGoogle Scholar
  58. Interactions,“ M. Friedman (Editor), Plenum, New York, pp. 299–328.Google Scholar
  59. Henkin, R. I. and Bradley, D. F. (1969). Regulation of taste acuity by thiols and metal ions. Proc. Natl. Acad. Sci. USA, 62, 30–37.Google Scholar
  60. Ishikawa, Y., Israel, S. E. and Melville, D. B. (1974). Participation of an intermediate sulfoxide in the enzymatic thiolation of the imidazole ring of hercyonine to form ergothioneine. J. Biol. Chem., 249, 4420–4427.Google Scholar
  61. Jones, M. M. and Pratt, T. H. (1976). Therapeutic chelating agents. J. Chem. Ed., 53, 342–347.Google Scholar
  62. Kallistratos, G. and Timmermann, A. (1966). Die chemische Auflosung von Cystinsteinen durch Mercapto-Verbindungen. Arzneimittelforschung, 16, 781–782.PubMedGoogle Scholar
  63. Kochakian, C. D. and Marcais, J. (1974). The free amino acids, hypotaurine and other ninhydrin reacting substances of the prostate and seminal vesicles of the guinea pig: regulation by testosterone. Alabama J. Medical Sciences, 11 (3), 240–251.Google Scholar
  64. Kojima, N., Sugiura, Y. and Tanaka, H. (1976). Indium (III) complexes of DL-penicillamine in aqueous solution. Evidence for the formation of protonated and hydrolyzed complexes. Bull. Chem. Soc. Japan, 49, 1294–1300.Google Scholar
  65. Kroll, W. and Lichte, K. H. (1973). Cystinosis: a review of the different forms and recent advances. Humangenetik, 20, 75–87.PubMedCrossRefGoogle Scholar
  66. Krull, L. H., Gibbs, D. E. and Friedman, M. (1971). 2-Google Scholar
  67. Vinylquinoline, a reagent to determine protein sulfhydryl groups spectrophotometrically. Anal. Biochem., 40, 80–85.Google Scholar
  68. Kuchinskas, E. J. and du Vigneaud, V. (1957). An increased vitamin B6. requirement in the rat on a diet containing L- penicillamne. Arch. Biochem. Biophys., 66, 1–9 and earlier cited references.Google Scholar
  69. Kyoden, Y., Iwami, K. and Mitsuda, H. (1971). A new sulfur-containing peptide from Lentinus edodes acting as a precursor for lenthionine. Agr. Biol. Chem., 35, 2059–2069.Google Scholar
  70. Lal, M., Lin, W. S., Gaucher, G. M. and Armstrong, D. A. (1975). The repair, protection and sensitization of papain with respect to inactivation by H2O2 and OH: effects of dithiothreitol, penicillamine, cystine, and penicillamine disulfide. Int. J. Radiat. Biol., 28, 549–564.Google Scholar
  71. Letter, J. E., Jr. and Jordan, R. B. (1975). Complexing of nickel (II) by cysteine, tyrosine, and related ligands and evidence for zwitterion reactivity. J. Am. Chem. Soc., 97, 2381–2390.Google Scholar
  72. Lilis, R. and Fischbein, A. (1976). Chelation therapy in work- ers exposed to lead. J. Am. Med. Assn., 235, 2823–2824.Google Scholar
  73. Lovstad, R. (1976). Effect of penicillamine on the conversion of DOPA to dopachrome in the presence of tyrosinase or ceruloplasmin. Biochem. Pharmacol., 25, 533–535.Google Scholar
  74. Mason, H. S. and Peterson, E. W. (1965). Melanoproteins. I. Reactions between enzyme-generaged quinones and amino acids. Biochim. Biophys. Acta, 111, 134–146.Google Scholar
  75. Masri, M. S. and Friedman, M. (1974). Interactions of keratins with metal ions: uptake profiles, mode of binding, and effects on properties of wool. In “Protein-Metal Interactions, ” M. Friedman (Editor), Plenum Press, New York, pp. 551–587.Google Scholar
  76. Masri, M. S., Windle, J. J. and Friedman, M. (1972). p-Nitrostyrene: new alkylating agent for sulfhydryl groups in soluble proteins and keratins. Biochem. Biophys. Res. Commun., 47, 1408–1413.Google Scholar
  77. Matoltsy, A. G. (1976). Keratinization. J. Invest. Dermatol., 67, 20–25.Google Scholar
  78. Mattke, D. J. and Adler, M. (1971). Mode of action of penicillamine in chronic schizophrenia. Dis. Nerv. Syst., 32, 388–391.Google Scholar
  79. Mattok, G. L. (1967). Reactions of adrenochrome with some thiols. Archiv. Biochem. Biophys., 120, 170–174.Google Scholar
  80. Misuraca, G., Nicolaus, R. A., Prota, G. and Ghiara, G. (1969). A cytochemical study of phaeomelanin formation in feather papillae of New Hampshire chick embryos. Experientia, 25, 920–922.PubMedCrossRefGoogle Scholar
  81. Nagasawa, H. T., Goon, D. J. W., Constantino, N. V. and Alexander, C. S. (1975). Diversion of ethanol metabolism by sulfhydryl amino acids. D-penicillamine-directed excretion of 2, 5, 5-trimethyl-D-thiazolidine-4-carboxylic acid in the urine of rats after ethanol administration. Life Sci., 17, 707–714.Google Scholar
  82. Okumura, S., Toshioka, N., Asakura, S., Ohya, M. and Nagamori, S. I. (1974). Studies of the oxidation-reduction potentials of 2-mercaptopropionylglycine and penicillamine using thiol-disulfide exchange reactions with cysteine and glutathione. Yakugaku Zasshi, 94 (6), 655–659.Google Scholar
  83. Otsuka, K. and Mori, Y. (1976). Inhibitory effect of Dpeniciallmine on degradation of hexosamine-containing substances in the involution of carrageenin granuloma induced by calcium chelate ethylene-diamine tetraacetate. Chem. Pharm. Bull., 24, 215–219.Google Scholar
  84. Patrick, A. D. (1965). Deficiencies of -SH-dependent enzymes in cystinosis. Clin. Sci., 28, 427–443.Google Scholar
  85. Patrick, A. D. (1962). The degradative metabolism of L- cysteine and L-cystine in vitro by liver in cystinosis. Biochem. J., 83, 248–256.Google Scholar
  86. Perings, E. and Junge, U. (1975). Wirkungen und Nebenwirkungen von D -Penicillamine. Wochenschrift fur Klinik und Praxis, 70, 1265–1274.Google Scholar
  87. Planas-Bohne, F. (1973). Untersuchung zur Bildung gemischter Disulfide zwischen D-Penicillamin und Serumproteinen. Res. Exp. Med., 161, 289–297.Google Scholar
  88. Powell, W., Heacock, R. A., Mattock, G. L. and Wilson, D. L. (1969). Chemistry of the aminochromes. Part X. Some further observations on the reactions of aminochromes with thiols. Canad. J. Chem., 47, 467–476.Google Scholar
  89. Purdie, J. W., Gillis, H. A. and Klassen, N. V. (1973). The pulse radiolysis of penicillamine and penicillamine disulfide in aqueous solution. Canad. J. Chem., 51, 3132–3142.Google Scholar
  90. Raab, W. P. and Gmeiner, B. M. (1976). The influence of Dpenicillamine on enzymatic activities: glucose-6-phosphate dehydrogenase. Correlation with serum levels measured in humans. J. Clin. Chem. Clin. Biochem., 14, 173–176.Google Scholar
  91. Raab, W. and Morth, C. (1974). Inhibition of alkaline phosphatase activity by D-penicillamine. Z. Klin. Chem. Biochem., 12, 309–310.Google Scholar
  92. Rabenstein, D. L. and Fairhurst, M. T. (1975). The binding of methyl-mercury by sulfhydryl-containing amino acids and by glutathione. J. Am. Chem. Soc., 97, 2086–2092.Google Scholar
  93. Rao, S. N., Parthasarathy, R. and Cole, F. E. (1973). Crystal and molecular structure of penicillamine hydrochloride monohydrate. Acta. Cryst., B29, 2373–2378.Google Scholar
  94. Rorsman, H., Rosengren, A. M. and Rosengren, E. (1973).Google Scholar
  95. Determination of 5-S-cysteinyldopa in melanomas with a fluorimetric method. Yale J. Biol. Med., 46, 516–522.Google Scholar
  96. Rosenfield, R. E., Jr. and Parthasarathy, R. (1975). The crystal structure and absolute configuration of D-penicillamine disulfide dihydrochloride: an unusually short N-Hchrw(133) S contact distance. Acta Cryst., B31, 462–468.CrossRefGoogle Scholar
  97. Rucker, R. B., Murray, J. A. and Riggins, R. S. (1977). Nutritional copper deficiency and penicillamine administration: some effects on bone collagen and arterial elastin crosslinking. This volume.Google Scholar
  98. Ruiz-Torres, A. (1974). Zur Frage der Penicillaminwirkung auf die Kollagensynthese. Arzneim. -Forsch (Drug Res.), 24 (1), 43–45.Google Scholar
  99. Ruiz-Torres, A. and Kurten, I. (1974). Zur Pharmakokinetak und zum Stoffwechsel von D- and L-Penicillamin. 3. Resorption, Ausscheidung und Metabolisierung. Arzneimittelforschung, 24 (9), 1258–1261.PubMedGoogle Scholar
  100. Sarkar, B., Sass-Kortsak, A., Clarke, R., Laurie, S. H. and Wei, P. (1977). A comparative study of in vitro and in vivo interaction of D-penicillamne and triethylenetetramine with copper. In press. I thank Dr. Laurie for a preprint of this paper.Google Scholar
  101. Schwimmer, S. and Friedman, M. (1972). Enzymatic and nonenzymathc genesis of volatile sulfur-containing food flavors. Flavour Industry, p. 137–145.Google Scholar
  102. Schneider, W. (1967). Die Wirkung von Penicillamin au pathologische Makromolekule. Munch. med. Wochenschrift, 109, 531–535.Google Scholar
  103. Schonbeck, N. D., Skalski, M. and Shafer, J. A. (1975). Reactions of pyridoxal 5’-phosphate, 6-aminocaproic acid, cysteine, and penicillamine. Models for reactions of Schiff baseGoogle Scholar
  104. linkages in pyridoxal 5’-phosphate-requiring enzymes. J. Biol. Chem., 250, 5343–5351.Google Scholar
  105. Schulman, J. D. and Bradley, K. H. (1970). Cystinosis: selective induction of vacuolation in fibroblasts by L-cysteine -D-penicillamine disulfide. Science, 169, 595–5967PubMedCrossRefGoogle Scholar
  106. Sigmund, P., Hasenbak, G. and Korber, F. (1968). Uber die Wirkung der Penicillamin-Antipoden auf Aspartattransaminase und die Reaktion ihrer Pyridoxalphosphat-thiazolidin mit Apo-Aspartattransaminase. Z. Physiol. Chem., 349, 1062–1070.Google Scholar
  107. Snow, J. T., Finley, J. W. and Friedman, M. (1976). Relative reactivities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyldehydroalanine methyl ester. Int. J. Peptide Protein Res., 8, 57–64.Google Scholar
  108. Snow, J. T., Finley, J. W. and Friedman, M. (1975). Oxidation of sulfhydryl groups to disulfides by sulfoxides. Biochem. Biophys. Res. Commun., 64, 441–447.Google Scholar
  109. Sweetman, B. J., Vestling, M. M., Ticaric, S. T., Kelly, P. L. and Field; L. (1971). Structure-activity relationships of penicillamine analogs and derivatives. J. Med. Chem., 14, 868–872.Google Scholar
  110. Thich, J. A., Mastropaolo, D., Potenza, J. and Schugar, H. J. (1974). Crystal and molecular structure of bis (copper II) Dpenicillamine disulfide nonhydrate. J. Am. Chem. Soc., 96, 726–731.Google Scholar
  111. Tomono, I., Abe, M. and Matsuda, M. (1973). Effect of penicillamine (a vitamin B antagonist) on pyridoxal enzymes. J. Biochem., 74, 587–592.PubMedGoogle Scholar
  112. Van Rensburg, N. J. J. and Swanepoel, O. A. (1967). Reactions of unsymmetrical disulfides. I. Sulfitolysis of derivatives of cysteamine and cysteine. Archiv. Biochem. Biophys., 118, 531–535.Google Scholar
  113. Vasiliev, V. I., Korobkin, V. N., Korchagin, V. B., Fedorets, T. M. and Kaverkina, T. D. (1974). Differential determination of functional groups in penicillamine hydrochloride (Russian). Antibiotiki, XIX, 146–150.Google Scholar
  114. Vasiliev, V. I., Usvyatsov, A. A., Korchagin, V. B., Fedorets, T. M., Korobkin, V. N. and Motmaschik, A. D. (1973). Amperometric titration of D-penicillamine hydrochloride (Russian). Antibiotiki, XVIII, 420–407.Google Scholar
  115. Walker, H. G., Jr., Kohler, G. O., Kuzmicky, D. D. and Witt, S. B. (1975). Problems in analysis of sulfur amino acids in feeds and foods. In “Protein Nutritional Quality of Foods and Feeds,” M. Friedman (Editor), Dekker, New York, pp. 549–567.Google Scholar
  116. Walshe, J. M. (1973). Copper chelation in patients with Wilson’s disease. Quart. J. Med. New Series, XLII, 441–452.Google Scholar
  117. Weigert, W. M., Offermanns, H. and Scherberich, P. (1975). D-penicillamine-production and properties. Angew. Chem. Internat. Ed., 14, 330–336.Google Scholar
  118. Wu, J. T. and Kuntz, R. R. (1975). The reactions of hydrogen atoms in aqueous solutions: effect of pH with cysteine and penicillamine. Radiation Res., 64, 662–666.PubMedCrossRefGoogle Scholar
  119. Wu, Y. V., Cluskey, J. E., Krull, L. H. and Friedman, M. (1971). Some optical properties of S-(3-(4-pyridylethyl)-Lcysteine and its wheat gluten and serum albumin derivatives. Canad. J. Biochem., 49, 1042–1049.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Mendel Friedman
    • 1
  1. 1.Western Regional Research LaboratoryAgricultural Research Service, U. S. Department of AgricultureBerkeleyUSA

Personalised recommendations