Oxidative Browning of Amadori Compounds from Amino Acids and Peptides

  • Hironaga Hashiba
  • Ikunori Koshiyama
  • Danji Fukushima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)


The oxygen-dependent browning (oxidative browning) of Amadori compounds from amino acids or peptides was studied since it was an important reaction contributing to the discoloration and deterioration of some foodstuffs containing sugars and amino compounds during storage in contact with atmospheric oxygen.

The browning of fourteen Amadori compounds derived from amino acids and peptides was determined under the influence of metals or oxygen. All Amadori compounds exhibited remarkable browning during storage at 37°C for 5 days when both 40 ppm of Fe2+and oxygen were present, but exhibited little browning without Fe2+or oxygen. Every mixture of a parent sugar and amino compound showed no browning even though Fe2+and oxygen were present. In particular, Amadori compounds composed of aromatic or heterocyclic amino acids were very reactive in oxidative browning, and this type of browning was synergistically accelerated by the presence of both Fe2+and Mn2+. The Amadori compound derived from pentose such as xylulose-glycine browned more rapidly than that from hexose such as fructose-glycine. Oxygen was thought to accelerate the breakdown of Amadori compounds to liberate parent amino acids and glucosone in the oxidative browning reaction.

In the browning reaction between glucose and seven peptides, glycylglycine, glycylleucine, leucylglycine, glycyltyrosine, glycylphenylalanine, glycylproline and glycylglycylglycine, the liberation of C-terminal amino acids by the cleavage of peptide bonds was observed. The amino acids were suggested to be liberated from the peptide in Amadori compounds, because the peptide bond in Amadori compounds was found to be more labile from the peptide.


Glycine Xylose Fructose Leucine Polyphenol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, A., Lowy, P.H., Borsook, H., J. Amer. Chem. Soc. 77, 4794 (1955).CrossRefGoogle Scholar
  2. Adachi, S., Nippon Nogei Kagaku Kaishi 32 313 (1958).CrossRefGoogle Scholar
  3. Bayne, S., Methods Carbohydr. Chem. 2 421 (1963).Google Scholar
  4. Bohart, G.S., Carson, J.F., Nature (London) 175, 4454 (1955).CrossRefGoogle Scholar
  5. Borsook, H., Natl. Acad. Sci.-Nati. Res. Council Publ. 557, 111 (1958).Google Scholar
  6. Burton, H.S., McWeeny, D.J., Pandhi, P.N., Nature (London) 199, 659 (1963).CrossRefGoogle Scholar
  7. Chuyen, N.V., Kurata, T., Fujimaki,M., Agric. Biol. Chem. 36, 1257 (1972).CrossRefGoogle Scholar
  8. Chuyen, N.V., Kurata, T., Fujimaki,M., Agric. Biol. Chem. 37, 327 (1973).CrossRefGoogle Scholar
  9. Clegg, K.M., J. Sci. Food Agric . 15 878 (1964).CrossRefGoogle Scholar
  10. Clifcorn, L.E., Advan. Food Res. 1, 48 (1948).Google Scholar
  11. Coulter, S.T., Jenness, R., Geddes, W.F., Advan. Food Res. 3, 47 (1951).Google Scholar
  12. Davidson, S., Meiklejohn, A.P., Passmore, R., “Human Nutrition and Dietetics,” (1959), E. & S. Livingstone Ltd., Edinburgh & London, p. 179.Google Scholar
  13. Dunlop, A.P., Stout, P.R., Swadesh, S., Ind. Eng. Chem. 38, 705 (1946).CrossRefGoogle Scholar
  14. Ellis, G.P., Advan. Carbohydr, Chem. 14, 63 (1959).CrossRefGoogle Scholar
  15. Fox, B.A., Cameron, A.G.,“A Chemical Approach to Food and Nutrition”, (1961), University of London Press Ltd., p. 226.Google Scholar
  16. Gottschalk,A., Biochem. J. 52, 455 (1952).PubMedGoogle Scholar
  17. Hagan,S.N., Horn,M.J., Lipton,S.H., Womack,M., J. Agric. Food Chem. 18, 273 (1970).CrossRefPubMedGoogle Scholar
  18. Hannan,R.S., Lea,C.H., Biochim. Biophys. Acta 9 293 (1952).CrossRefGoogle Scholar
  19. Hashiba, H., J. Agric. Food Chem. 24, 70 (1976).CrossRefGoogle Scholar
  20. Hashiba, H., J. Agric. Food Chem. 23. 539 (1975).CrossRefGoogle Scholar
  21. Hashiba, H., Agric. Biol. Chem., 37, 871 (1973).CrossRefGoogle Scholar
  22. Hashiba, H., Koshiyama, I., Sakaguchi, K., Iguchi, N., Nippon Nogei Kagaku Kaishi 44 312 (1970).CrossRefGoogle Scholar
  23. Hashiba, H., Agric. Biol. Chem. 38, 551 (1974).CrossRefGoogle Scholar
  24. Hodge, J.E., J. Agric. Food Chem. 1 928 (1953).Google Scholar
  25. Hodge, J.E., Fisher, B.E., Methods Carbohydr. Chem. 2. 99 (1963).Google Scholar
  26. Hodge, J.E., Advan. Carbohydr. Chem. 10, 187 (1955).Google Scholar
  27. Hodge, J.E., Rist, C.E., J. Amer. Chem. Soc. 75, 316 (1953).CrossRefGoogle Scholar
  28. Horn, M.J., Lichtenstein, H., Womack, M., J. Agric. Food Chem. 16, 741 (1968).Google Scholar
  29. Ingles, D.L., Reynolds, T.M., Austral. J. Chem. 11, 575 (1958). Joslyn, M.A., Food Res. 22. 1 (1957).CrossRefGoogle Scholar
  30. Kato, H., Sakurai, Y., Nippon Nogei Kagaku Kaishi 38, 536 (1964). Kato, H., Agric. Biol. Chem. 26, 187 (1962).Google Scholar
  31. Lewis, V.M., Lea, C.H., Biochim. Biophys. Acta 4 532 (1950).CrossRefGoogle Scholar
  32. Markuze, Z., Ghem. Abst. 59. 4980 (1963).Google Scholar
  33. Mathew, A.G., Parpia, H.A.B., Advan. Food Res. 19, (1971), p. 75.CrossRefGoogle Scholar
  34. Mitsuda,H., Shikanai,T., Vitamins (Japan) 13, 394 (1957).Google Scholar
  35. Miura,Y., Tahara,S., Mizutani,J., Agric. Biol. Chem. 37, 2669 (1973).CrossRefGoogle Scholar
  36. Nelson,N., J. Biol. Chem. 153, 375 (1944).Google Scholar
  37. Okuhara,A., Saito,N., Yokotsuka,T., J. Ferment. Technol. 49, 272 (1971).Google Scholar
  38. Okuhara,A., Kagaku to Seibutsu (Japan) 10. 383 (1972).CrossRefGoogle Scholar
  39. Omata,S., Ueno,T., Nakagawa,Y., Nippon Nogei Kagaku Kaishi 29, 259 (1955).Google Scholar
  40. Peleg,Y., Mannheim,C.H., J. Agric. Food Chem. 18. 176 (1970).CrossRefGoogle Scholar
  41. Prey,V.V., Petershofer,G., Z. Zuckerind. 18. 63 (1968).Google Scholar
  42. Reynolds,T.M., Advan. Food Res. 14. 168 (1965).Google Scholar
  43. Sato,S., Tadenuma,M., Nippon Jozo Kyokai Zasshi 62. 1287 (1967).Google Scholar
  44. Somers,G.F., Beeson,K.C., Advan. Food Res. 1, 314 (1948).Google Scholar
  45. Spark,A.A., J. Sci. Food Agric. 20. 308 (1969).CrossRefGoogle Scholar
  46. Takeuchi, T., J. Ferment. Technol. 54, 143 (1976).Google Scholar
  47. Talley,E.A., Porter,W.L., J. Agric. Food Chem. 16. 262 (1968).CrossRefGoogle Scholar
  48. Ting,S.V., J. Agric. Food Chem. 4, 263 (1956).Google Scholar
  49. Umemoto,S., Ishiie,S., Irie,Y., Imai,T., Nippon Nogei Kagaku Kaishi 44, 64 (1970).CrossRefGoogle Scholar
  50. Wasserman,A.E., Spinelli,A.M., J. Food Sci. 35, 328 (1970).CrossRefGoogle Scholar
  51. Yoda,A., J. Chem. Soc. Jap. 73, 18 (1952).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Hironaga Hashiba
    • 1
  • Ikunori Koshiyama
    • 1
  • Danji Fukushima
    • 1
  1. 1.Noda Institute for Scientific ResearchNoda-shi, Chiba-kenJapan

Personalised recommendations