The Biological Significance of Carbohydrate — Lysine Crosslinking During Heat — Treatment of Food Proteins

  • Helmut F. Erbersdobler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)


The heating of proteins in the presence of glucose or lactose results in the formation of fructoselysine or lactuloselysine (galactose-fructoselysine), in which the sugars are linked at the ε-amino group of lysine. Both compounds, which are very unstable to acid hydrolysis, can be estimated by analysing furosine, which is formed during the hydrolysis with strong hydrochloric acid. With this useful indicator it could be shown that the fructoselysine group occurs in considerable amounts in many heat-damaged foods.

Results of balance trials with casein containing radioactive labeled fructoselysine indicate a 30–40 % release of fructoselysine by digestion. Fructoselysine or lactuloselysine escaping the digestion and absorption are destroyed by the microorganisms in the hind gut. Free fructoselysine is not actively transported out of the intestine but absorbed by diffusion. Experiments with pregnant guinea pigs have shown a rapid penetration in large amounts through the placental wall. Our results indicate that fructoselysine does not interfere with the physiological and metabolic functions of the organism. The intestinal absorption of short-chain amino acids seems to be affected by the presence of fructose-lysine. Fructoselysine is rapidly excreted by the kidneys as an intact molecule


Hydrolysis Proline Lysine Microbial Degradation Fructose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brüggemann, J. and Erbersdobler, H. (1968). Fructoselysin als wichtigstes Reaktionsprodukt von Lysin mit Glucose bei Hitzeschädigung von Lebens-und Futtermitteln. Z. Lebensmittel-Unters. u. -Forschung 137, 137.Google Scholar
  2. Buraczewski, S., Buraczewska,L. and Ford, J.E. (1967). The influence of heating of fish proteins on the course of their digestion. Acta biochem. polon. 14, 121.Google Scholar
  3. ErbersSobler, H. (1970). Zur Schädigung des Lysins bei der Herstellung und Lagerung von Trockenmilch. Milchwissenschaft 25, 280.Google Scholar
  4. Erbersdobler, H. (1975) The biological significance of fructoselysine. Paper at the Xth Int. Congr. Nutr., Kyoto, Japan, Abstract No. 5316.Google Scholar
  5. Erbersdobler, H. (1976). Amino Acid Availability. In: Protein Metabolism and Nutrition ( D.J.A. Cole et al, ed.), Butterworths, London-Boston.Google Scholar
  6. Erbersdobler, H., Gunsser, I. and G. Weber (1970). Abbau von Fruktoselysin durch die Darmflora. Zbl. Vet.Med. A 17, 573.Google Scholar
  7. Erbersdobler, H., Husstedt, W., Alfke, F., Brandt,A. and Chelius, H.H. (1974). Intestinale ResorptionGoogle Scholar
  8. Verteilung und diaplacentarer Übergang von Fructoselysin. Z. Tierphysiol., Tierern., Futtermit-telkde. 33, 202.Google Scholar
  9. Erbersdobler,il. and Zucker, H. (1966). Untersuchungen zum Gehalt an Lysin und verfügbarem Lysin in Trokkenmagermilch. Milchwissenschaft 21, 564.Google Scholar
  10. Finot, P.A. (1973). “Non-enzymic browning”. In: “Proteins in human nutrition” ( Porter, J.W.G. and Rolls,B.A., eds.), p. 501, Academic Press, London-New York.Google Scholar
  11. Finot, P.A., Bricout, J., Viani, R. and Mauron, J. (1968). Identification of a new lysine derivate obtained upon acid hydrolysis of heated milk. Experientia 24, 1097.PubMedCrossRefGoogle Scholar
  12. Finot, P.A. and Mauron, J. (1969). Le blocage de la lysine par la reaction de Maillard I. Synthese de N-(desoxy-l-D-fructosyl-1)-et N-(desoxy-1-D-lactulosyl-1)-L-lysines. Hely. Chim. Acta 52, 1488.CrossRefGoogle Scholar
  13. Folk, J.E. (1956). The influence of the lysine-glucose reaction on enzymatic digestion. Arch. Biochem. Biophys. 64, 6.PubMedCrossRefGoogle Scholar
  14. Ford, J.E. and Shorrock, C. (1971). Metabolism of heat-damaged protein in the rat. Influence of heat-damage on the excretion of amino acids and peptides in the urine. Br. J. Nutr. 26, 311.PubMedCrossRefGoogle Scholar
  15. Heyns, K., Heukeshoven, J. and Brose, K.H. (1968). Der Abbau von Fruktoseaminosäuren zu N-(2-Furoylmethyl)Aminosiiuren. Zwischenprodukte von Bräunungsreaktionen. Angewandte Chemie 80, 62.Google Scholar
  16. Mori, B. (1975). On intestinT absorption delay of browned labeled casein by amino-carbonyl reaction. Paper at the Xth Int. Congr. Nutr., Kyoto, Japan. Abstract No. 5228.Google Scholar
  17. Mori, B. (1976). Utilisation in rats of 14C-1-lysine labeled casein browned by amino-carbonyl reaction.Google Scholar
  18. Paper at the Faculty of Veterinarian Medicine in Munich, 13.7.1976.Google Scholar
  19. Summerer, F. (1976). Beeinflussung des intestinalen Aminosäuren-und Monosaccharidtransports durch Fruktoselysin. Dissertation, University of Munich, Fac. Vet.Med.Google Scholar
  20. Valle-Riestra, J. and Barnes, R.H. (1970). Digestion of heat-damaged egg albumen by the rat. J. Nutr. 100, 873.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Helmut F. Erbersdobler
    • 1
  1. 1.Institute of Physiology, Physiological Chemistry and Physiology of Nutrition. Faculty of Veterinary MedicineUniversity of MunichMünchen 22Germany

Personalised recommendations