Availability of the True Schiff’s Bases of Lysine. Chemical Evaluation of the Schiff’s Base between Lysine and Lactose in Milk

  • Paul-André Finot
  • Eliane Bujard
  • Françoise Mottu
  • Jean Mauron
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)


During the heat-treatment of milk, the Maillard reaction which takes place between the epsilon-amino group of lysine and lactose leads to the formation of two well-defined chemical types : the Schiff’s base in equilibrium with its aldosylamine form and the deoxyketose (Amadori product). Rat growth assays showed that the synthetic ε-N-deoxyketosyl-L-lysine was not utilized as a source of lysine and that the true Schiff’s bases resulting from the reaction of lysine with aromatic aldehydes were 100% utilized indicating that the Schiff’s base ⇄ aldosylamine are also 100% utilized.

Taking the “in vitro” enzymatic method as references for the determination of available lysine, the classic acid hydrolysis and the reduction method by NaBH4 were used to evaluate lysine bound to lactose as Schiff’s base ⇄ aldosylamine or deoxyketose forms. It was demonstrated that a) the deoxyketose is the only form of unavailable lysine in milk, b) the furosine content in the acid hydrolysates multiplied by the conversion factor 3.1 gives the quantity of the deoxyketose form present, c) the reduction by NaBH4 permits one to evaluate totally the two types of binding; the difference between the values obtained by both methods corresponds to the Schiff’s base ⇄ aldosylamine form.


Schiff Base Acid Hydrolysis Milk Sample Maillard Reaction Biological Availability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bobbitt, J.J. (1956). Periodate oxydation of Carbohydrates. In Advances in Carbohydrate Chemistry. M.L. Wolfrom and R.S. Tipson (Editors), Academic Press Inc., Publishers, New York, p. 1–41.Google Scholar
  2. Brüggemann, J. und Erbersdobler, H. (1968). Fructoselysin als wichtigstes Reaktionsprodukt von Lysin mit Glucose bei Hitzeschädigung von Lebens-und Futtermitteln. Z. Lebensmittel-Untersuchung 137, 137–143.Google Scholar
  3. Erbersdobler, H. (1970). Zur Schädigung des Lysins bei der Herstellung und Lagerung von Trockenmilch. Milchwissenschaft 25, 280–284.Google Scholar
  4. Finney, D.J. (1952). Fieller’s method cited p. 27 in Statistical Methods in Biological Assay. Griffin.Google Scholar
  5. Finot, P.A., Bricout, J., Viani, R., and Mauron, J. (1968). Identification of a New Lysine Derivative obtained upon Acid Hydrolysis of Heated Milk. Experientia 24, 1097–1099.Google Scholar
  6. Finot, P.A., Viani, R., Bricout, J., and Mauron, J. (1969). Detection and Identification of Pyridosine, a Second Lysine Derivative obtained upon Acid Hydrolysis of Heated Milk. Experientia 25, 134–135.Google Scholar
  7. Finot, P.A., and Mauron, J. (1969). Le blocage de la lysine par la réaction de Maillard. I. Synthèse de N-(desoxy-1-D-fructosyl1) et N-(desoxy-l-D-lactulosyl-1)-L-lysines. Helv. Chim. Acta 52, 1488–1495 /(1972) III. Propriétés chimiques, id. 55, 1153.Google Scholar
  8. Finot, P.A. (1973). Non-enzymic Browning. In Proteins in Human Nutrition: Ed. by Porter J.W.G. Rolls B.A., Academic Press London, p. 501–514.Google Scholar
  9. Heyns, K., Heukeshoven, J., and Brose, K.H. (1968). Der Abbau vonGoogle Scholar
  10. Fructose-Aminosäuren zu N-(2-Furosylmethyl) Aminosäuren : Zwischenprodukte von Bräunungsreaktionen. Angew. Chem. 80, 627.Google Scholar
  11. Hodge, J.F. (1953). Chemistry of Browning. Reactions in Model Systems. Agr. Food Chem. 1, 928–943.CrossRefGoogle Scholar
  12. Hurrell, R.F., and Carpenter, K.J. (1974). Mechanisms of heat damage in proteins. 4. The reactive lysine content of heat-damaged material as measured in different ways. Br. J. Nutr. 32, 589–604.Google Scholar
  13. Kern, W., Schulz, R.C., and Cherdron, H. (1960). Macromolecular polyacroleins. German Patent 1. 082. 054 (Cl. 39 c).Google Scholar
  14. Mauron, J., Mottu, F., Bujard, E., and Egli, R.H. (1955). The availability of Lysine, Methionine and Tryptophan in condensed and Milk Powder. “In Vitro” Digestion Studies. Arch. Biochem. and Biophys. 59, 433–451.CrossRefGoogle Scholar
  15. Mottu, F., and Mauron, J. (1967). The differential determination of lysine in heated milk. II. Comparison of the “in vitro” methods with biological evaluation. J. Sci. Fd. Agric. 18, 57–62.CrossRefGoogle Scholar
  16. Mottu, F., Finot, P.A., Mauron, J., cited by Mauron (1970). Le comportement chimique des protéines lors de la préparation des aliments et ses incidences biologiques. J. Internat. Vitaminol. 40, 209–227.Google Scholar
  17. Pigman, W., Cleveland, E.A., Couch, D.H., and Cleveland, J.H. (1951). Reactions of Carbohydrates with Nitrogenous Substances. I Mutarotations of some Glycosylamines. J. Am. Chem. Soc. 73, 1976–1979.CrossRefGoogle Scholar
  18. Polyanovskii, 0.L. (1963). The synthesis and some properties of e-N-Pyridoxyl Lysine. Biochemistry (URSS) 28, 751–754.Google Scholar
  19. Sgarbieri, V.C., Amaya, J., Tanaka, M., and Chichester, C.O. (1973). Nutritional Consequences of the Maillard Reaction. Amino Acid Availability from Fructose-Leucine and Fructose-Tryptophan in the Rat. J. Nutr. 103, 657–663.PubMedGoogle Scholar
  20. Weitzel, G., Geyer, H.U., and Fretzdorff, A.M. (1957). Darstellung und Stabilität der Salze von Aminosäure-N-Glykosiden. Chem. Ber. 90, 1153–1161.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Paul-André Finot
    • 1
  • Eliane Bujard
    • 1
  • Françoise Mottu
    • 1
  • Jean Mauron
    • 1
  1. 1.Nestlé Products Technical Assistance Co. Ltd.La Tour-de-PeilzSwitzerland

Personalised recommendations