Heat Induced Crosslinks in Milk Proteins and Consequences for the Milk System

  • Henning Klostermeyer
  • Ernst H. Reimerdes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 86)

Abstract

The protein system of milk is rather unusual, there are nearly no interchain crosslinks found. Even intrachain crosslinks, especially disulfide bridges, are present only in about every fourth protein molecule. Heating causes dramatic changes in the structure of milk proteins, resulting in the formation of polymeric networks. The contribution of individual milk proteins, namely the ß-lactoglobulins, α-lactalbumin and æ-casein, to the formation of crosslinks is studied with respect to heating temperature and time, pH and atmosphere. Measured are changes in molecular weights and in the SH/SS-levels as well as the formation of dehydroalanine, lysinoalanine, lanthionine and isopeptide bonds. Some practical aspects of crosslinking in milk proteins are discussed.

Keywords

Whey Protein Milk Protein Disulfide Bridge Maillard Reaction Bovine Colostrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymus (1976). Processed protein foods and lysinoalanine. Nutrition Reviews, 34, 120–122.Google Scholar
  2. Beeby, R. (1974 ). The half-cystines of bovine 2C-casein. Biochim. Biophys. Acta, 359, 346–350.Google Scholar
  3. Fox, P.F. and Hoynes, M.C.T. (1974). Heat stability of milk: influence of colloidal calcium phosphate and ß-lactoglobulin. J. Dairy Res., 42, 427–435.CrossRefGoogle Scholar
  4. Freimuth, U., Schlegel, B., Gahner, E. and Nötzold, H. (1974). Die Bildung von Lysinoalanin in alkalibehandelten Milchproteinen. Nahrung, 18, K5 - K8.Google Scholar
  5. Gough, P. and Jenness, R. (1962). Heat denaturation of ß-lactoglobulin A and B. J. Dairy Sci. 45, 1033–1039.CrossRefGoogle Scholar
  6. Hoagland, P.D., Thompson, M.P. and Kalan, E.B. (1971). Amino Acid Composition of q -, o s4 and a 5-Casein. J. Dairy Sci., 54, 1103–1110.CrossRefGoogle Scholar
  7. Hurrell, R.F., Carpenter, K.J., Sinclair, W.J., Otterburn, M.S. and Asquith, R.S. (1976). The significance of lysine-containing isopeptides and of lanthionine in heated proteins. Br. J. Nutr., 35, 383–395.Google Scholar
  8. Klostermeyer, H. and Offt, S. (1976). Unpublished.Google Scholar
  9. Klostermeyer, H. and Reimerdes, E.H. (1976). In preparation.Google Scholar
  10. Klostermeyer, H., Rabbel, K. and Reimerdes, E.H. (1975). Hitzeinduzierte Veränderungen der proteolytischen Ver-daubarkeit von Milcheiweiß. Milchwissenschaft, 30, 194–199.Google Scholar
  11. Klostermeyer, H., Rabbél, K. and Reimerdes, E.H. (1976). Vorkommen der Isopeptidbindungen N6 -(ß-Aspartyl-)lysin und N6 -(’ -Glutamyl-)lysin in Rindercolostrum. HoppeSeyler’s Z. Physiol. Chem.., in press.Google Scholar
  12. Manson, W. and Carolan, T. (1972). The alkali-induced elimination of phosphate from ß-casein. J. Dairy Res., 39, 189–194.CrossRefGoogle Scholar
  13. McKenzie, H.A.; Editor (1970/1971). “The Milk Proteins - Chemistry and Molecular Biology”. 2 Vol., Academic Press, New York and London.Google Scholar
  14. Mrowetz, G. and Klostermeyer, H. (1972). Polarographische Bestimmung der Disulfidgruppen in Milch. Polarographische Bestimmung der Thiolgruppen in Milch. Z. Lebensmittelunters. Forsch., 149, 74–78, 133–139.Google Scholar
  15. Mulder, H. and Walstra, P. (1974). “The milk fat globule”. CAB/Pudoc, Wageningen.Google Scholar
  16. Nijhuis, H., Klostermeyer, H. and Reimerdes, E.H. (1976). Separation of2e-casein and the oc -minor caseins in form of their S-sulfonates. Milchwissenschaft, to be published.Google Scholar
  17. Ralston, G.B. (1972). The decrease in stability of ß-lactoglobulin on blocking the sulphydryl group. Compt. Rend. Lab. Carlsberg, 38, 499–512.Google Scholar
  18. Roels, H., Préaux, G. and Lontie, R. (1973). Polarimetric and chromatographic investigation of the anaerobic alkaline denaturation of bovine ß-lactoglobulin A and B. Evidence for thiol-disulfide exchange. Biochemie, 55, 421–430.Google Scholar
  19. Sawyer, W.H. (1968). Heat Denaturation of Bovine ß-Lactoglobulins and Relevance of Disulfide Aggregation. J. Dairy Sci., 51, 323–329.CrossRefGoogle Scholar
  20. Schmitz, I., Zahn, H., Klostermeyer, H., Rabbel, K. and Watanabe, K. (1976). Zum Vorkommen von Isopeptidbindungen in erhitztem Milcheiweiß. Z. Lebensmittelunters. Forsch., 160. 377–381.Google Scholar
  21. Schnack, U., Reimerdes, E.H. and Klostermeyer, H. (1976). In preparation.Google Scholar
  22. Southward, C.R. and Goldman, A. (1975). Co-precipitates - a review. N.Z. J. Dairy Technol., 10, 101–112.Google Scholar
  23. Thomasow, J. and Klostermeyer, H. 1976. Beeinflussung der Labgerinnung hocherhitzter Milch durch N-Äthylmaleinimid. Milchwissenschaft, in press.Google Scholar
  24. Watanabe, K. and Klostermeyer, H. (1976a). Heat induced changes in sulfhydryl and disulfide levels of ß-lactoglobulin A and the formation of polymers. J. Dairy Res., in press.Google Scholar
  25. Watanabe, K. and Klostermeyer, H. (1976b). Bildung von Dehydroalanin, Lysinoalanin und Lanthionin durch hitzeinduzierten Abbau von Cystein-und Cystinresten in ß-Lactoglobulin A. Z. Lebensmittelunters.Forsch., in preparation.Google Scholar
  26. Watanabe, K. and Klostermeyer, H. (1976c). Heat induced degradations of ß-lactoglobulin A and B. Milchwissenschaft, in press.Google Scholar
  27. Webb, B.H., Johnson, A.H. and Alford, J.A.; Editors (1974). “Fundamentals óf Dairy Chemistry”. Second Edition. The Avi Publ. Comp., Inc., Westport.Google Scholar
  28. Wheelock, J.V. and Kirk, A. (1974). The role of ß-lactoglobulin in the primary phase of rennin action on heated casein micells and heated milk. J. Dairy Res., 41, 367–372.PubMedCrossRefGoogle Scholar
  29. Wiechen, A. and Knoop, A.-M. (1974). Untersuchungen über das Verhalten von ß-Lactoglobulin uÎ80(-Lactalbumin beim Erhitzen der Milch mit Hilfe der J-markierten Milch proteine. Milchwissenschaft, 29, 65–70.Google Scholar
  30. Wilson, G.A. and Wheelock, J.V. (1972). Factors affecting the action of rennin in heated milk. J. Dairy Res., 39, 413–419.CrossRefGoogle Scholar
  31. Wilson, G.A., Wheelock, J.V. and Kirk, A. (1974). The effect of reduction and alkylation on the primary phase of rennin action on unheated and heated milk. J.Dairy Res., 41, 37–44.PubMedCrossRefGoogle Scholar
  32. Zimmerman, J.K., Barlow, G.H. and Klotz, I.M. (19767 Dossication of ß-lactoglobulin near neutral pH. Arch. Biochem. Biophys., 138, 101–109.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Henning Klostermeyer
    • 1
  • Ernst H. Reimerdes
    • 1
  1. 1.Institut für ChemieBundesanstalt für MilchforschungKielGermany

Personalised recommendations