Skip to main content

Crosslinking Amino Acids — Stereochemistry and Nomenclature

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 86))

Abstract

The stereochemical factors that would be expected to operate during crosslinking of amino acids residues in proteins are analyzed on the basis of mechanistic and theoretical considerations. Names are assigned both to the known amino acids and to the unknown, but theoretically possible, amino acids that result from the crosslinking reactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alworth, W. L. (1976). Private communication.

    Google Scholar 

  • Alworth, W. L. (1972). “Steroechemistry and Its Application in Biochemistry,” Wiley, Interscience, New York.

    Google Scholar 

  • Asquith, R. S. and Otterburn, M. S. (1977). Cystine-alkali reac-tions in relation to protein crosslinking. This volume.

    Google Scholar 

  • Bentley, R. B. (1970). “Molecular Asymmetry in Biology,” Volume II, Academic Press, New York.

    Google Scholar 

  • Bentley, R. (1969). “Molecular Assymetry in Biology,” Volume I, Academic Press, New York.

    Google Scholar 

  • Bohak, Z. (1964). N-Epsilon-(DL-2-amino-2-carboxyethyl)-L-lysine, a new amino acid formed on alkaline treatment of proteins. J. Biol. Chem., 239, 2878–2887.

    PubMed  CAS  Google Scholar 

  • Brooks, P. R. (1976). Reactions of oriented molecules. Science 193, 11–16.

    CAS  Google Scholar 

  • Brosquist, H. P., Horne, D. W. and Tanphaichitr, V. (1975). Lysine metabolism in protein-calorie malnutrition with attention to the synthesis of carnitine. In “Protein-Calorie Mal-nutrition,” R. E. Olson (Ed.), Academic Press, New York, 49–63.

    Google Scholar 

  • Cahn, R. S. (1964). An introduction to the sequence rule. A system for specification of the absolute configuration. J. Chem. Ed., 41, 116–125.

    Google Scholar 

  • Cavins, J. F. and Friedman, M. (1967). New amino acids derived from reactions of a-amino groups in proteins with a,ß-unsaturated compounds. Biochemistry 6, 3766–3770.

    CAS  Google Scholar 

  • Chang, Y. F. (1976). Pipecolic acid pathway: the major lysine metabolic route in the rat brain. Biochem. Biophys. Res. Commun. 69, 174–180.

    CAS  Google Scholar 

  • Finley, J. W., Snow, J. T., Johnston, P. H. and Friedman, M. (1977). Inhibitory effect of mercaptoamino acids on lysinoalanine formation during alkali treatment of proteins. This volume.

    Google Scholar 

  • Finley, J. W. and Friedman, M. (1977). Products derived from alkali-treatment of proteins. This volume.

    Google Scholar 

  • Finley, J. W. and Friedman, M. (1976). Products derived from alkali treatment of proteins. 172d American Chemical Society Meeting, Abstracts, p. AGFD 46.

    Google Scholar 

  • Finley, J. W. and Friedman, M. (1973a). Chemical methods for available lysine. Cereal Chem., 50, 101–105.

    CAS  Google Scholar 

  • Finley, J. W. and Friedman, M. (1973b). New sweetening agents: N-formyl-and N-acetylkynurenine. J. Agric. Food Chem. 3334.

    Google Scholar 

  • Friedman, M. (1977). Effects of lysine modification on chemical, physical, nutritive, and functional properties of proteins, In “Food Proteins,” J. R. Whitaker and S. R. Tannenbaum (Eds.), Avi, Westport, Connecticut.

    Google Scholar 

  • Friedman, M. (Ed.) (1974), M. (Ed.) (1974). “Protein-Metal Interactions,” Plenum, New York, Chapters 2, 15, 24. See also Chapter 2 of Friedman (1973a).

    Google Scholar 

  • Friedman, M. (1973a). “Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides, and Proteins,” Pergamon Press, Oxford, England and Elmsford, New York, Chapter 5.

    Google Scholar 

  • Friedman, M. (1973b). See Chapter 16 of Friedman (1973a).

    Google Scholar 

  • Friedman, M. (1972). Selective chemical modification of protein sulfhydryl groups. Inta-Science Chemistry Reports 6, 23–34.

    Google Scholar 

  • Friedman, M. (1968). Solvent effects of reactions of protein functional groups. Quarterly Repts. Sulfur Chem. 3, 125144.

    Google Scholar 

  • Friedman, M. (1967). Solvent effects in reactions of amino groups in amino acids, peptides, and proteins with a,ß-unsaturated compounds. J. Am. Chem. Soc., 89, 4709–4713.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M. and Finley, J. W. (1976). Reactions of proteins with dehydroalanine. 172d American Chemical Society Meeting, Abstracts p. AGFD 45. This volume.

    Google Scholar 

  • Friedman, M. and Finley, J. W. (1975a). Reactions of proteins with ethyl vinyl sulfone Int. J. Peptide Protein Res., 7, 481–486.

    Article  CAS  Google Scholar 

  • Friedman, M. and Finley, J. W. (1975b). Vinyl compounds as re-agents for determining available lysine in proteins. In “Protein Nutritional Quality of Foods and Feeds,” Part 1, M. Friedman (Ed.), Dekker, New York, 503–520.

    Google Scholar 

  • Friedman, M. and Finley, J. W. (1975c). Evaluation of methods for tryptophan analysis in proteins. In “Protein Nutritional Quality of Foods and Feeds,” Part 1, M. Friedman (Ed.), Dekker, New York, 423–452.

    Google Scholar 

  • Friedman, M. and Masri, M. S. (1973). Sorption behavior of mercuric salts on modified wool and polyamino acids. J. Applied Polym. Sci., 17, 2179–2186.

    Google Scholar 

  • Friedman, M. and Noma, A. T. (1975). Methods and problems in the chromatographic analysis of sulfur amino acids. In “Protein Nutritional Quality of Foods and Feeds,” Part 1, M. Friedman (Ed.), Dekker, New York, pp. 521–548.

    Google Scholar 

  • Friedman, M. and Wall, J. S. (1964). Application of a Hammett-Taft relation to kinetics of alkylation of amino acids and peptide model compounds with acrylonitrile. J. Am. Chem. Soc., 86, 3735–3741.

    Google Scholar 

  • Gilbert, H. F., III and O’Leary, M. H. (1975). Modification of arginine and lysine in proteins with 2,4-pentanedione. Biochemistry 14, 5194–5198.

    CAS  Google Scholar 

  • Ginsburg, S. and Wilson, I. B. (1964). Factors affecting the competitive formation of oxazolines and dehydroalanines from serine derivatives. J. Am. Chem. Soc., 86, 4716–4720.

    Google Scholar 

  • Gould, D. G. and MacGregor, J. T. (1977). Nutritional and biological consequences of protein crosslinking: an overview. This volume.

    Google Scholar 

  • Gross, E. (1977). a,ß -Unsaturated and related amino acids in peptides and proteins. This volume.

    Google Scholar 

  • Gross, E. (1974). a,ß -Unsaturated amino acids in peptides and proteins: formation, chemistry, and biological role. 168th Meeting of the American Chemical Society, Atlantic City, New Jersey, Abstracts p. AGFD 13.

    Google Scholar 

  • Gross, E. (1971). Structure and function of peptides with a,6-unsaturated amino acids. Intra-Science Chem. Repts. 5, 405408.

    Google Scholar 

  • Hanson, K. R. (1966). Applications of the sequence rule. I. Naming the paired ligands g,g at a tetrahedral atom Xggij. II. Naming the two faces of a trigonal atom Yghi. J. Am. Chem. Soc., 88, 2731–2742.

    Google Scholar 

  • Hanson, K. R. (1976). Concepts and perspectives in enzyme stereochemistry. Ann. Rev. Biochem. 45, 307–330.

    Article  PubMed  CAS  Google Scholar 

  • Higashino, K., Fujioka, M. and Yamamura, Y. (1971). The conversion of L-lysine to saccharopine and a-aminoadipate in mouse. Arch. Biochem. Biophys. 142, 606–614.

    Google Scholar 

  • Klyne, W. and Buckingham, J. (1974). “Atlas of Stereochemistry,” Oxford University Press, New York.

    Google Scholar 

  • Koshland, D. E., Jr. (1973). Contribution of orientation to the catalytic power of enzymes. Proc. Int. Conf. Theoret. Physi-cal Biology, M. Marois (Ed.), Karger, Basel, Switzerland, 286–302.

    Google Scholar 

  • Kupchan, S. M. (1974a). Selective alkylation: a mechanism of tumor inhibition. Intra-Science Chem. Rept. 8, 57–66.

    Google Scholar 

  • Kupchan, S. M. (1974b). Novel natural products with antitumor activity. Fed. Proc., 33, 2288–2295.

    PubMed  CAS  Google Scholar 

  • MacGregor, J. T. and Clarkson, T. W. (1974). Distribution, tissue binding and toxicity of mercurials. In “Protein-Metal

    Google Scholar 

  • Interactions,“ M. Friedman (Ed.), Plenum Press, New York, 463–503.

    Google Scholar 

  • Meloche, H. P. and Monti, C. T. (1975). Resolution of the diastereoisomers generated by the chemical reduction of pyruvate-lysine Schiff’s base. Biochem. Biophys. Res. Commun. 66, 151–159.

    CAS  Google Scholar 

  • Moller, B. L. (1976a). Conversion of saccharopine to lysine in barley. Phytochemistry 15, 695–696.

    Article  Google Scholar 

  • Moller, B. L. (1976b). Lysine catabolism in barley (Hordeum vulgare L.). Plant Physiol. 57, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Morino, Y. and Snell, E. E. (1967). The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions. J. Biol. Chem., 242, 2800–2809.

    PubMed  CAS  Google Scholar 

  • Nakamiya, T., Mizuno, H., Meguro, T., Ryono, H. and Takinami, K. (1976). Antibacterial activity of lauryl ester of DL-lysine. J. Ferment. Technol. 54, 369–373.

    Google Scholar 

  • Perlman, D. (1975). Lysine and lysine analog potentiation of antibiotic and antimicrobial activity. J. Antibiotics 2, 997–999.

    Article  Google Scholar 

  • Prelog, V. (1976). Chirality in chemistry. Science 193, 17–24.

    CAS  Google Scholar 

  • Snow, J. T., Finley, J. W. and Friedman, M. (1976). Relative reactivities of sulfhydryl groups with N-acetyl dehydroalanine and N-acetyldehydroalanine methyl ester. Int. J. Peptide Protein Res., 8, 57–64.

    Article  CAS  Google Scholar 

  • Spencer, H. K., Khatri, H. N. and Hill, R. K. (1976). Stereo-chemistry of some acetyl coenzyme A condensations. Bioorganic Chem., 5, 177–186.

    Article  CAS  Google Scholar 

  • Touloupis, C. and Vassiliadis, A. (1977). Lysinoalanine forma-tion in wool after treatments with some phosphate salts. This volume.

    Google Scholar 

  • Whitaker, J. R. and Feeney, R. E. (1977). Behavior of glycosyl and 0-phosphoryl proteins in alkaline solution. This volume.

    Google Scholar 

  • Whitfield, R. E. and Friedman, M. (1972). Chemical modification of wool with dicarbonyl compounds in dimethyl sulfoxide. Text. Res. J., 42, 344–347.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Friedman, M. (1977). Crosslinking Amino Acids — Stereochemistry and Nomenclature. In: Friedman, M. (eds) Protein Crosslinking. Advances in Experimental Medicine and Biology, vol 86. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9113-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9113-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9115-0

  • Online ISBN: 978-1-4757-9113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics