The Envelope of Active Wrist Circumduction. An In Vivo Electrogoniometric Study

  • Patrick Salvia
  • Paul Klein
  • José Henri David
  • Marcel Rooze
Part of the NATO ASI Series book series (NSSA, volume 256)


The knowledge of the functional anatomy of the active wrist is essential for clinical evaluation of upper limb disorders. Range of motion (RoM) is a daily tool in orthopaedic field.1,29 To allow an evaluation of a functional loss, a total wrist analysis seems necessary.


Wrist Motion Ulnar Deviation Helical Axis Radial Styloid Polar Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. N. An and E. Y. Chao, Kinematic analysis of human movement, Ann. Biomedical Engineering 12:585 (1984).CrossRefGoogle Scholar
  2. 2.
    J.G. Andrews, and Y. Youm, A biomechanical investigation of wrist kinematics, J. Biomech. 12:83 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Beggs, Advanced Mechanism, Mac Millan, Ney York (1966).Google Scholar
  4. 4.
    R. A. Berger, R. D. Crowninshield, A. E. Flatt, The three-dimensional rotational behaviour of the carpal bones, Clin. Orthop. 167:303 (1982).PubMedGoogle Scholar
  5. 5.
    L. Blankevoort, R. Huiskes, and A. de Lange, The envelope of passive knee joint motion, J. Biomech. 21:705(1988).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Blankevoort, R. Huiskes, and A. de Lange, Helical axes of passive knee joint motions, J. Biomech. 23:1219(1990).PubMedCrossRefGoogle Scholar
  7. 7.
    D. C. Boone, and S. P. Azen, Normal range of motion of joints in male subjects, J. Bone Joint Surg. 61A:756 (1979).PubMedGoogle Scholar
  8. 8.
    R.B. Brumbaugh, R. D. Crownshield, W. F. Blair, and J. G. Andrews, An in-vivo study of normal wrist kinematics, J. Biomech. Eng. 104:176 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    R.H. Brumfield, and J. A. Champoux, A biomechanical study of normal functional wrist motion, Clin. Orthop. 187:23 (1984).PubMedGoogle Scholar
  10. 10.
    A. de Lange, R. Huiskes, J.M.G Kauer, and H. J. Woltring, On the application of a smoothing procedure in the kinematical study of the human wrist joint in vitro, In Huiskes Ed: Biomechanics: Principles and Applications. Martinus Nijhoff Pub. pp 303 (1982).Google Scholar
  11. 11.
    A. de Lange, 1987, A kinematical study of the human wrist joint, Thesis Nijmegen (1987).Google Scholar
  12. 12.
    A. de Lange, J.M.G Kauer, and R. Huiskes, Kinematic behaviour of the human wrist joint: a roentgenstereophotogrammetric analysis, J Orthop. Res. 3:56 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    A. J. Erdman, J. K. Mayfield, F. Dorman, M. Wallrich, and W. Dahlof, Kinematic and kinetic analysis of the human wrist stereoscopic instrumentation, ASME J. Biomeh. Eng. 105:136 (1979).Google Scholar
  14. 14.
    G. R. Fisk, La biomécanique de l’articulation du poignet, in Tubiana R. Traité de la chirurgie de la main, vol. 1. Paris, Masson ed. (1980).Google Scholar
  15. 15.
    M. Garcia-Elias, W.P. Cooney, K.N. An, R.L. Linscheid, and E.Y.S. Chao, Wrist kinematics after limited intercarpal arthrodesis, J. Hand Surg. 14-A:791 (1989).CrossRefGoogle Scholar
  16. 16.
    E. S. Grood, and W. J. Suntay, A joint coordinate system for the clinical description of three-dimensional motions: application to the knee, ASME J. Biomech. Eng. 101:124 (1983).Google Scholar
  17. 17.
    R. Huiskes, J. Kremers, A. de Lange, H. J. Woltring, G. Selvik, Th. J. G. van Rens, Analytical stereophotogrammetric determination of three- dimensional knee joint geometry, J. Biomech. 18:559 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    J.M.G. Kauer, The mechanism of the carpal joint, Clin. Orthop. 202:16 (1986).PubMedGoogle Scholar
  19. 19.
    G. L. Kinzel, A. S. Hall, B. M. Hillberry, Measurement of the total motion between two body segments-I. Analytical development, J. Biomech. 5:93 (1972).PubMedCrossRefGoogle Scholar
  20. 20.
    J.N. Kuhlmann, and R. Tubiana, Mécanisme du poignet normal, In: Razemon JP, Fisk GR (eds): Le poignet; Expansion Scientifique Française: pp. 62 (1983).Google Scholar
  21. 21.
    H. Lanshammar, On precision limits for derivates numerically calculated from noisy data, J. Biomech. 15:459 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    R.L. Linscheid, Kinematic considerations of the wrist, Clin. Orthop. 202:27 (1986).PubMedGoogle Scholar
  23. 23.
    H. Ojima, S. Miyake, M. Kumashiro, H. Togami, and K. Suzuki, Dynamic analysis of wrist circumduction: a new application of the biaxial flexible electrogoniometer, Clinical Biomechanics 6:221 (1991).CrossRefGoogle Scholar
  24. 24.
    A.K. Palmer, F.W. Werner, D. Murphy, and R. Gilsson, Functional wrist motion: a biomechanical study, J. Hand Surg. 10A:39 (1985).Google Scholar
  25. 25.
    H. K. Ramakrishnan, and M. P. Kadaba, On the estimation of joint kinematics during gait, J. Biomech. 24:969 (1991).PubMedCrossRefGoogle Scholar
  26. 26.
    L.K. Ruby, W.P. Cooney, K.N. An, R.L. Linscheid, and E.Y.S. Chao, Relative motion of selected carpal bones: a kinematic analysis of the normal wrist, J. Hand Surg. 13-A:1 (1988).CrossRefGoogle Scholar
  27. 27.
    J. Ryu, W.P. Cooney, L.J. Askew, K.N. An, and E.Y.S Chao, Functional ranges of motion of the wrist joint, J. Hand Surg. 16-A: 409 (1991).CrossRefGoogle Scholar
  28. 28.
    Ph. Saffar, The study of the biomechanics of wrist movements in a oblique plane. Advances in the biomechanics of the hand and the wrist, NATO Advanced Research Worshop, Brussels 22–23 may p 37 (1992).Google Scholar
  29. 29.
    S. K. Sarrafian, J. L. Melamed, G. M. Goshgarian, Study of wrist motion in flexion and extension, Clin Orthop 126:153 (1976).Google Scholar
  30. 30.
    H.H.C.M. Savelberg, Wrist joint kinematics and ligament behaviour, Doctoral Dissertation, University of Nijmegen, Nijmegen, The Nederlands (1992).Google Scholar
  31. 31.
    G. Selvik, Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system, Acta Orthop. Scand. 60 (suppl 232) (1989).Google Scholar
  32. 32.
    R. Shiavi, T. Limbird, M. Frazer, K. Stivers, A. Strauss, and J. Abramovitz, Helical motion analysis of the knee-I. Methodology for studying kinematics during locomotion, J. Biomech. 20:459 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    H. G. Sommer, and N.R. Miller, A technique for kinematic modeling of anatomical joints, J. Biomech. Eng. 102:311(1980).PubMedCrossRefGoogle Scholar
  34. 34.
    R.G. Volz, M. Lieb, and J. Benjamin, Biomechanics of the wrist, Clin. Orthop. 149:112 (1980).PubMedGoogle Scholar
  35. 35.
    H. J. Woltring, R. Huiskes, A. de Lange, and F.E. Veldpaus, Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics, J. Biomech. 18:379 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    H. J. Woltring, A. de Lange, J.M.G. Kauer, and R. Huiskes, Instantaneous helical axis estimation via natural cross-validated splines, In G. Bergman, A. Kölber, and Rohlmann. (eds.) Biomechanics: Basic and applied research. Dordrecht/ Boston/ Lancaster: Martinus Nijhoff Pub. 121 (1987).CrossRefGoogle Scholar
  37. 37.
    H. J. Woltring, Representation and calculation of 3-D joint movement, Human Movement Science 10:603 (1991).CrossRefGoogle Scholar
  38. 38.
    Y. Youm, and A.E. Flatt, Kinematics of the wrist, Clin Orthop 149:21 (1980).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Patrick Salvia
    • 1
  • Paul Klein
    • 1
  • José Henri David
    • 1
  • Marcel Rooze
    • 1
  1. 1.Laboratory for Functional AnatomyUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations