The Immune-Neuroendocrine Circuitry—The Next, and Possibly, the Last Frontier of Vertebrate Immunity

  • Andor Szentivanyi
  • Christine M. Abarca
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)

Abstract

David Wilson Talmage, one of the most important pioneers of the molecular biology of immunoregulation, in discussing recently (1988) what is beyond molecular immunology, poses the following questions:

What will we study after we understand all the genes and their products that impact on the immune system? Surely, in a few years we will understand how lymphocytes differentiate and are activated, how they synthesize, secrete, kill, migrate, What will we study then? My prediction is that immunology will then have its greatest challenge. How can we put it all together for the benefit of mankind? How will we prevent allergies, autoimmunity, transplant rejection, and how will we cure cancer? The coming era of immunology will be a stage of synthesis-a return to Stage 1 and the immunology of the whole animal.”1

Keywords

Atopic Dermatitis Adenylate Cyclase Neural Crest Newcastle Disease Virus Leukaemia Inhibitory Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. W. Talmage, Introduction to basic immunology, in: “Immunological Diseases,” M. Samter, ed., Little, Brown and Company, Boston (1988).Google Scholar
  2. 2.
    G. Filipp, A. Szentivanyi, and B. Mess, Anaphylaxis and nervous system, Acta. med. hung. Tomus III, Fasciculus 2:163(1952).Google Scholar
  3. 3.
    A. Szentivanyi, G. Filipp, and I. Legeza, Investigations on tobacco sensitivity, Act. med. hung. Tomus III, Fasciculus 2:175(1952).Google Scholar
  4. 4.
    G. Filipp and A. Szentivanyi, Frage der Organlokalisation der allergischen Reaktion, Wierner klin. Wschr. 65:620(1953).Google Scholar
  5. 5.
    G. Filipp and A. Szentivanyi, Experimentelle Data zur regulativen Rolle des Neuroendokriniums in experimenteller Anaphylaxie I. Relazioni e Communicazioni. Rome II Pansiero Scientifico 229:1 (1956).Google Scholar
  6. 6.
    A. Szentivanyi, Allergie und Zentralnervensystem. Acta. Allergologica 6:27 (1953).Google Scholar
  7. 7.
    A. Szentivanyi and G. Filipp, Experimentelle Data zur regulativen Rolle des Neuroendokriniums in experimenteller Anaphylaxie. II. Relazionie e Communicazioni. Rome II Pansiero Scientifico 237:1 (1956).Google Scholar
  8. 8.
    A. Szentivanyi and J. Szekely, Effect of injury to, and electrical stimulation of hypothalamic areas on the anaphylactic and histamine shock of guinea pig, Ann. Allergy 14:259 (1956).PubMedGoogle Scholar
  9. 9.
    G. Filipp and A. Szentivanyi, Die Wirkung von Hypothalamuslasionen auf den anaphylaktischen Schock des Meerschweinchens. Allergie und Asthmaforschung Bd. 1:12 (1957).Google Scholar
  10. 10.
    A. Szentivanyi and J. Szekely, Uber den Effekt der Schadigung und der elektrischen Reizung der hypothalamischen Gegenden auf den anaphylaktischen und Histamin-Schock des Meerschweinchens, Allergie und Asthmaforschung Bd. 1:28 (1957).Google Scholar
  11. 11.
    A. Szentivanyi and J. Szekely, Wirkung der konstanten Reizung hypothalamischer Strukturen durch Tiefenelektroden auf den histaminbedingten und anaphylaktischen Schock des Meerschweinchens, Acta. Physiol. Hung. Suppl. V 11:41 (1957).Google Scholar
  12. 12.
    A. Szentivanyi and G. Filipp, Anaphylaxis and the nervous system. Part II. Ann. Allergy 16:143 (1958).PubMedGoogle Scholar
  13. 13.
    G. Filipp and A. Szentivanyi, Anaphylaxis and the nervous system. Part III. Ann. Allergy 16:306 (1958).PubMedGoogle Scholar
  14. 14.
    A. Szentivanyi and J. Szekely, Anaphylaxis and the nervous system. Part IV. Ann. Allergy 16:389 (1958).PubMedGoogle Scholar
  15. 15.
    A. Szentivanyi, Hypothalamic influences on antibody formation and on bronchial responses to histamine, in: “Proceedings of the Fourth Aspen Conference on Research in Emphysema and Asthma,” Aspen, Colorado (1961).Google Scholar
  16. 16.
    A. Szentivanyi and C. W. Fishel, Effect of bacterial products on responses to the allergic mediators, in: “Immunological Diseases,” M. Samter, ed., Little, Brown and Company, Boston (1965).Google Scholar
  17. 17.
    A. Szentivanyi and C. W. Fishel, Die Amin-Mediatorstoffe der allergischen Reaktion und die reaktionsfahiegheit ihrer Erfolgeszellen, in: “Pathogenese und Therapie allergischer Reaktionen,” G. Filipp and A. Szentivanyi, eds., Ferdinand Enke Verlag, Stuttgart, Germany (1966).Google Scholar
  18. 18.
    A. Szentivanyi, J. J. Krzanowski and J. B. Polson, The autonomic nervous system: structure, function, and altered effector responses, in: “Allergy: Principles and Practice,” E. Middleton, C. E. Reed, and E. F. Ellis, eds., The CV Mosby Company, St. Louis (1978).Google Scholar
  19. 19.
    A. Szentivanyi, J. B. Poison and J. J. Krzanowski, The altered reactivity of the effector cells to antigenic and pharmacological influences and its relation to cyclic nucleotides. I. Effector reactivities in the efferent loop of the immune response, in: “Pathomechanismus und Pathogenese Allergischer Reaktionen,” G. Filipp, ed., Werk-Verlag Dr. Edmund Banachewski, Munich (1980).Google Scholar
  20. 20.
    A. Szentivanyi and D. F. Fitzpatrick, The altered reactivity of the effector cells to antigenic and pharmacological influences and its relation to cyclic nucleotides. II. Effector reactivities in the efferent loop of the immune response, in: “Pathomechanismus und Pathogenese Allergischer Reaktionen,” G. Filipp, ed., Werk-Verlag Dr. Edmund Banachewski, Munich (1980).Google Scholar
  21. 21.
    A. Szentivanyi and J. Szentivanyi, Immunomodulatory effects of central and peripheral autonomic mechanisms mediated by neuroeffector molecules, in: “Proceedings of International Symposium on Biological Response Modifiers in Clinical Oncology and Immunology,” Plenum Press, New York (1982).Google Scholar
  22. 22.
    A. Szentivanyi and J. Szentivanyi, The emergence of neuroendocrine disorders as a new group of autoimmune diseases, in: “Proceedings of Symposium on Clinical Laboratory Immunology,” Plenum Press, New York (1982).Google Scholar
  23. 23.
    G. Filipp and A. Szentivanyi, Anaphylaxis and the nervous system. Part III, in: “Foundations of Psychoneuroimmunology,” S. Locke, R. Ader, H. O. Besedovsky, N. R. Hall, G. Solomon and T. Strom, eds., Aldine Publishing, Hawthorne, NY (1985).Google Scholar
  24. 24.
    A. Szentivanyi and J. Szentivanyi, Immune-neuroendocrine circuits in antibiotic-bacterial interactions, in: “Proceedings of Third International Symposiun on the Influence of Antibiotics on the Host-Parasite Relationship,” Springer Verlag, Heidelberg (1987).Google Scholar
  25. 25.
    A. Szentivanyi, S. Reiner, G. Filipp and O. Heim, The influence of anterior hypothalamic lesions on the kinetic parameters of 125I-VIP (vasoactive intestinal peptide) binding to murine mononuclear cells, in: “Proceedings of Workshop 12 on Mediators in Asthma, XII World Congress of Asthmology,” Editorial Garsi, Madrid (1987).Google Scholar
  26. 26.
    A. Szentivanyi, J. J. Krzanowski and J. B. Poison, The autonomic nervous system and altered effector responses, in: “Allergy: Principles and Practice,” E. Middleton, C. E. Reed and E. F. Ellis, eds., The CV Mosby Company, St. Louis (1988).Google Scholar
  27. 27.
    A. Szentivanyi, J. Szentivanyi, K. Haberman and O. Heim, Nonantibiotic properties of antibiotics in relationship to immune-neuroendocrine influences, Clin. Pharmacol. Therap. 43:166 (1988)Google Scholar
  28. 28.
    A. Szentivanyi, K. Haberman, O. Heim, P. Schultze, G. Filipp and S. Reiner, Hypothalamic and other central influences on antibiosis and host immunity, in: “Proceedings of the Fourth International Conference on Immunopharmacology,” Pergamon Press, Oxford (1988).Google Scholar
  29. 29.
    A. Szentivanyi, S. Reiner, O. Heim, G. Filipp and C.M. Abarca, Some biochemical and cellular features of adrenergic mechanisms induced by bacterial lipopolysaccharide endotoxin in rats with or without chemical sympathetic ablation achieved by 6-hydroxydopamine hydrobromide (6-OHDA), in: “Proceedings of International Symposium on Endotoxin,” Jichi Medical School, Tochigi, Japan (1988).Google Scholar
  30. 30.
    A. Szentivanyi, S. Reiner, O. Heim, G. Filipp and C. M. Abarca, The effect of 6-hydroxydopamine hydrobromide on endotoxin-induced adrenergic mechanisms, in: “Proceedings of Second International Meeting on Respiratory Allergy,” Pythagora Press, Rome (1988)Google Scholar
  31. 31.
    J. Szentivanyi, A. Szentivanyi, P. Schultze, G. Filipp and O. Heim, Influences of hypothalamic and extrahypothalamic brain structures on the immunogenicity of antibiotic-pretreated bacteria, in: “Proceedings of Annual Meeting of the International Society for Interferon Research,” Japanese Society for Interferon Research, Kanagawa, Japan (1988).Google Scholar
  32. 32.
    M. E. Schwartz, S. Reiner, O. Heim, C. M. Abarca and A. Szentivanyi, Further observations on the cellular and molecular mechanisms involved in the reciprocal histamine-catecholamine counterregulatory interplay in relation to induction of histidine decarboxylase synthesis by interleukin-3 and granulocyte-macrophage colony stimulating factor, in: “Proceedings of XIII International Congress of Allergology and Clinical Immunology,” Mosby-Yearbook, St. Louis (1988).Google Scholar
  33. 33.
    A. Szentivanyi, The discovery of immune-neuroendocrine circuits and the concepts of prevailing immunologic thought that impeded the timely recognition of their role in immune-homeostasis, in: “Proceedings of the International Symposium on Interactions Between the Neuroendocrine and Immune Systems,” Pythagora Press, Rome (1988).Google Scholar
  34. 34.
    A. Szentivanyi, Plenary Lecture: Natural neuropeptides in the immunologic inflammation of the airways in asthma, in: “Proceedings of XIV World Congress of Natural Medicines, Malaga, Spain (1988).Google Scholar
  35. 35.
    A. Szentivanyi and J. Szentivanyi, Antibiotic-bacterial interactions in relation to immune- neuroendocrine circuits, in: “Proceedings of XIII International Congress of Allergology and Clinical Immunology,” Mosby-Yearbook, St. Louis (1988).Google Scholar
  36. 36.
    J. Szentivanyi, A. Szentivanyi, P. Schultze, G. Filipp and O. Heim, Changes in the immune parameters of antibiotic-bacterial interactions induced by hypothalamic and other electrolytic brain lesions produced through stereotaxically implanted depth electrodes, in: “The Influence of Antibiotics on the Host-Parasite Relationship,” G. Guussen, W. Opferkuch, G. Peters and G. Pulverer, eds., Springer-Verlag, Heidelberg, Germany (1989).Google Scholar
  37. 37.
    A. Szentivanyi, S. Reiner, O. Heim, G. Filipp and C.M. Abarca, The effect of sympathetic ablation [6-hydroxydopamine hydrobromide (6-OHDA); axotomy] on endotoxin induced adrenergic mechanisms, The Pharmacologist 31:118 (1989).Google Scholar
  38. 38.
    J. Szentivanyi, P. Schultz, O. Heim, C. Abarca and A. Szentivanyi, Hypothalamic and other central influences on antibiotic modulated bacterial immunogenicity, The Pharmacologist 31:193 (1989).Google Scholar
  39. 39.
    J. Szentivanyi, P. Schultze, O. Heim, S. Reiner, S. Robicsek, C. Abarca and A. Szentivanyi, The effect of hypothalamic and extrahypothalamic nuclear groupings on the antibiotic modulated bacterial immunogenicity and production of IL-1, IFN and TNF, Cytokine 1:364 (1989).Google Scholar
  40. 40.
    A. Szentivanyi, S. Reiner, M.E. Schwartz, O. Heim, J. Szentivanyi and S. Robicsek, Restoration of normal beta adrenoceptor concentrations in A549 lung adenocarcinoma cells by leukocyte protein factors and recombinant interleukin-1a, Cytokine 1:118 (1989).Google Scholar
  41. 41.
    A. Szentivanyi, J.J. Krzanowski, J.B. Poison and C.M. Abarca, The pharmacology of microbial modulation in the induction and expression of immune reactivities. I. The pharmacologically active effector molecules of immunologic inflammation, immunity, and hypersensitivity. Immunopharmacology Rev. 1:159 (1990).CrossRefGoogle Scholar
  42. 42.
    A. Szentivanyi, The discovery of immune-neuroendocrine circuits in the fall of 1951, in: “Interactions Among the Central Nervous, Neuroendocrine and Immune Systems,” J. W. Hadden, G. Nistico and K. Masek, eds., Pythagora Press, Rome (1989).Google Scholar
  43. 43.
    G. Schechter, A good relationship: sensitive, synchronized and synergistic, Prog. Neuro-Endocrine Immunol. 2:35 (1989).Google Scholar
  44. 44.
    J. W. Hadden and A. Szentivanyi, eds. “The Pharmacology of the Reticuloendothelial System,” Plenum Press, New York (1985).Google Scholar
  45. 45.
    A. Szentivanyi, J. Szentivanyi, E. Middleton, Jr., H. Friedman, L. D. Prockop and C. M. Abarca, The pharmacology of microbial modulation in the induction and expression of immune reactivities. II. Effector mechanisms in the afferent and efferent limbs of the immune response, Immunopharmacology Rev. 5 (in press, 1994).Google Scholar
  46. 46.
    C.S. Goodman and K.G. Pearson, Neuronal development: cellular approaches in invertebrates, Neurosa. Res. Program Bull. 20:777 (1982).Google Scholar
  47. 47.
    X. He and M.G. Rosenfeld, Mechanisms of complex transcriptional regulation: implication for brain development, Neuron 7:183 (1991).PubMedCrossRefGoogle Scholar
  48. 48.
    D.G. Willkinson and R. Krumlauf, Molecular apporaches to the segmentation of the hindbrain, Trends Neurosci. 13:335 (1990).CrossRefGoogle Scholar
  49. 49.
    N. LeDouarin. “The Neural Crest,” Cambridge University Press, Cambridge (1982).Google Scholar
  50. 50.
    B.A. Cunningham, J.J. Hemperley, B.A. Murray, E.A. Prediger, R. Brackenbury, and G.M. Edelman, Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing, Science 236:799 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    R. J. Milner, C. Lai, J. G. Sutcliffe and F. E. Bloom, Expression of immunoglobulin-like proteins in the nervous system: properties of the neural protein 1B236/MAG, in: “Neuroimmune Networks: Physiology and Diseases,” E. J. Goetzl and N. H. Spector, eds., Alan R. Liss, Inc., New York (1989).Google Scholar
  52. 52.
    A.F. Williams and A.N. Barclay, The immunoglobulin superfamily — domains for cell surface recognition, Ann. Rev. Immunol. 6:381 (1988).CrossRefGoogle Scholar
  53. 53.
    G. M. Edelman. “Neural Darwinism,” Basic Book, Inc., New York (1987).Google Scholar
  54. 54.
    J.F. Bazan, Structural design and molecular evolution of a cytokine receptor superfamily, Proc. Natl. Acad. Sci. USA 87:6934 (1990).PubMedCrossRefGoogle Scholar
  55. 55.
    J.F. Bazan, Neuropoietic cytokines in the hematopoietic fold, Neuron 7:197 (1991).PubMedCrossRefGoogle Scholar
  56. 56.
    T. Yamamori and A. Sarai, Coevolution of cytokine receptor families in the immune and nervous systems, Neuroscience Res. 151–161 (1992).Google Scholar
  57. 57.
    A. Miyajima, T. Kitamura, N. Harada, T. Yokota and K. Arai, Cytokine receptors and signal transduction, Ann. Rev. Immunol. 10:295 (1992).CrossRefGoogle Scholar
  58. 58.
    T. Yamamori, K. Fukada, R. Aebersold, S. Korsching, M.J. Fann and P.H. Patterson, The cholinergic neuronal differentiation factor from heart cells is identical to leukemia inhibitory factor, Science 246:1412 (1989).PubMedCrossRefGoogle Scholar
  59. 59.
    S. Saadat, M. Sendtner and H. Rohrer, Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture, J. Cell Biol. 108:1807 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    T. Hama, Y. Kushima, M. Miyamoto, M. Kubota, N. Takei and H. Hatanaka, Interleukin-6 improves the survival of mesencephalic catecholaminergic and septal cholinergic neurons from postnatal cholinergic neurons from postnatal, two-week-old rats in cultures, Neuroscience 40:445 (1991).PubMedCrossRefGoogle Scholar
  61. 61.
    T. Taga, M. Higi, Y. Hirata, K. Yamasaki, K. Yasukawa, T. Matsuda, T. Hirano and T. Kishimoto, Interleukin-6 triggers the association of its receptor with a possible signal transducer, gpl30, Cell 58:573 (1989).PubMedCrossRefGoogle Scholar
  62. 62.
    M. Murphy, K. Reid, D.J. Hilton and P.F. Bartlett, Generation of sensory neurons is stimulated by leukemia inhibitory factor, Proc. Natl. Acad. Sci. USA 88:3498 (1991).PubMedCrossRefGoogle Scholar
  63. 63.
    D.P. Gearing, C.J. Thut, T. VandenBos, S.D. Gimpel, P.B. Delaney, J. King, V. Price, D. Cosman and M.P. Beckmann, Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gpl30, EMBO J. 10:2839 (1991).PubMedGoogle Scholar
  64. 64.
    N.Y. Ip, S.H. Nye, T.G. Boulton, S. Davis, T. Taga, Y. Li, S.J. Birren, K. Yasukawa, T. Kishimoto, D.J. Anderson, N. Stahl and G.D. Yancopoulos, CNTF and LIF act on neuronal cells via shared signal pathway that involve the IL-6 signal transducing receptor component, gp 130, Cell 69:1121 (1992).PubMedCrossRefGoogle Scholar
  65. 65.
    T. Yamamori, Molecular mechanisms for generation of neural diversity and specificity: roles of polypeptide factors in development of postmitotic neurons, Neurosci. Res. 12:545 (1992).PubMedCrossRefGoogle Scholar
  66. 66.
    S. Davis, T.H. Aldrich, D.M. Valenzuela, V. Wong, M.E. Fürth, S.P. Squinto and G.D. Yancopoulos, The receptor for ciliary neurotrophic factor, Science 253:59 (1991).PubMedCrossRefGoogle Scholar
  67. 67.
    D.P. Gearing and D. Cosman, Homology of the p40 subunit of natural killer cell stimulatory factor with the extracellular domain of the interleukin-6 receptor, Cell 66:8 (1991).CrossRefGoogle Scholar
  68. 68.
    A.K. Hall and M.S. Rao, Cytokines and neurokines: related ligands and related receptors, Trends Neurosa. 15:35 (1992).CrossRefGoogle Scholar
  69. 69.
    T.M. Jessell and D. A. Melton, Diffusible factors in vertebrate embryonic induction, Cell 68:257 (1992).PubMedCrossRefGoogle Scholar
  70. 70.
    P.H. Patterson, The emerging neuropoietic cytokine family: frist CDF/LIF, CNTF and IL-6; next ONC, MGF, GCSF? Curr. Opinion Neurobiol. 2:94 (1992).CrossRefGoogle Scholar
  71. 71.
    G.M. Edelman, Topobiology, Sci. Am. 260:44 (1989).CrossRefGoogle Scholar
  72. 72.
    W. Lanoutte. “Genius in the Shadows: A Biography of Leo Szilard,” MacMillan, New York (1992).Google Scholar
  73. 73.
    A. Szentivanyi and H. Friedman, eds. The Immunologic Revolution: Facts and Witnesses, CRC Press, Boca Raton, FL (1994).Google Scholar
  74. 74.
    N. Geschwind and A.M. Galaburda, Cerebral lateralization: biological mechanisms, associations, and pathology. Parts Mil, Arch Neurol. 42:428 (1985).PubMedCrossRefGoogle Scholar
  75. 75.
    A. Szentivanyi, The immune-neuroendocrine circuitry and its relation to asthma, in: “Bronchial Asthma — Mechanisms and Therapeutics,” E. B. Weiss and M. Stein, eds., Little, Brown and Company, Boston (1993).Google Scholar
  76. 76.
    A. Szentivanyi, Beta-adrenergic subsensitivity in asthma and atopic dermatitis: A status report, Acta. Biomed. Hung. Amer. 1:1 (1991).Google Scholar
  77. 77.
    G. Renoux, K. Biziere, M. Renoux, P. Bardos and D. Degenne, Consequences of bilateral brain neocortical ablation on imuthiol-induced immunostimulation in mice, in: “Neuroimmune Interactions: Proceedings of the Second International Workshop on Neuroimmuno-modulation,” B. D. Jankovic, B. M. Markovic and N. H. Spector, eds., Ann. NY Acad. Sci. 496: 346 (1987).Google Scholar
  78. 78.
    R. Malinow and R.W. Tsien, Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices, Nature 346(6290):177 (1990).PubMedCrossRefGoogle Scholar
  79. 79.
    J.M. Bekkers and C.F. Stevens, Presynaptic mechanism for long-term potentiation in the hippocampus, Nature 346(6286):724 (1990).PubMedCrossRefGoogle Scholar
  80. 80.
    P.N. McFadden and D.E. Koshland, Jr., Habituation in the single cell: diminished secretion of norepinephrine with repetitive depolarization in PC12 cells, Proc. Natl. Acad. Sci. USA 87:2031 (1990).PubMedCrossRefGoogle Scholar
  81. 81.
    P.N. McFadden and D.E. Koshland, Jr., Parallel pathways for habituation in repetitively stimulated P12 cells, Neuron 4:615 (1990).PubMedCrossRefGoogle Scholar
  82. 82.
    B.H. Morimoto and D.E. Koshland, Jr., Excitatory amino acid uptake and N-methyl-D-aspartate-mediated secretion in a neural cell line, Proc. Natl. Acad. Sci. USA 87:3518 (1990).PubMedCrossRefGoogle Scholar
  83. 83.
    B.H. Morimoto and D.E. Koshland, Jr., Induction and expression of long- and short-term neurosecretory potentiation in a neural cell line, Neuron 5:875 (1990).PubMedCrossRefGoogle Scholar
  84. 84.
    Y. Dudai, Neurogenetic dissection of learning and short-term memory in Drosophila, Ann. Rev. Neurosci. 11:537 (1988).PubMedCrossRefGoogle Scholar
  85. 85.
    A. Szentivanyi, P. Maurer and B.W. Janicki, eds. “Antibodies: Structure, Synthesis, Function, and Immunologic Intervention in Disease,” Plenum Press, New York (1987).Google Scholar
  86. 86.
    A. Szentivanyi and G. Filipp. “Proprietes Immuno-Chimiques et Physico-Chimiques des Anticorps,” Editions Medicales Flammarion, Paris, France (1962).Google Scholar
  87. 87.
    J. Szentivanyi, A. Szentivanyi, J. F. Williams and H. Friedman, Virus associated immune and pharmacologie mechanisms in disorders of respiratory and cutaneous atopy, in: “Viruses, Immunity and Immunodeficiency,” A. Szentivanyi and H. Friedman, eds., Plenum Press, New York (1986).CrossRefGoogle Scholar
  88. 88.
    H. Friedman, T. W. Klein and A. Szentivanyi, eds. “Immunomodulation by Bacteria and Their Products,” Plenum Press, New York (1981).Google Scholar
  89. 89.
    A. Szentivanyi, E. Middleton, J. F. Williams and H. Friedman, Effect of microbial agents on the immune network and associated pharmacologic reactivities, in: “Allergy: Principles and Practice,” E. Middleton, C.E. Reed and E.F. Ellis, eds., The CV Mosby Company, St. Louis (1983).Google Scholar
  90. 90.
    T. W. Klein, S. Specter, H. Friedman and A. Szentivanyi, eds. “Biological Response Modifiers in Human Oncology and Immunology,” Plenum Press, New York (1983).CrossRefGoogle Scholar
  91. 91.
    J. M. Krueger, F. Obal, Jr., L. Johannsen, A. B. Cady and L. Toth, Endogenous slow-wave sleep substances: a review, in: “Current Trends in Slow-Wave Sleep Research,” C. Dugsovic and A. Wauquier, eds., Raven Press, New York (1988).Google Scholar
  92. 92.
    J. M. Krueger, F. Obal, Jr., M. Opp, L. Johannsen, A.B. Cady and L. Toth, Immune response modifiers and sleep, in: “Interactions Among Central Nervous System, Neuroendocrine and Immune Systems,” J. W. Hadden, K. Masek and G. Nistico, eds., Pythagora Press, Rome, Italy (1989).Google Scholar
  93. 93.
    M. P. Fillion, N. Prudhomme, F. Haour, G. Fillion, M. Bonnet, G. Lespinats, K. Masek, M. Flegel, N. Corvaia and J. M. Launay, Hypothetical role of the serotonergic system in neuroimmunomodulation: preliminary molecular studies, in: “Interactions Among Central Nervous System, Neuroendocrine and Immune Systems,” J. W. Hadden, K. Masek and G. Nistico, eds., Pythagora Press, Rome, Italy (1989).Google Scholar
  94. 94.
    P.M. Dougherty and N. Dafny, Central opioid systems are differentially affected by products of the immune response, Soc. Neurosa. Abstr. 13:1437 (1987).Google Scholar
  95. 95.
    O.F. Eremina and L.V. Devoino, Production of humoral antibodies in rabbits following destruction of the nucleus of the midbrain raphe, Byull Eksp. Biol. Med. 74:258 (1973).Google Scholar
  96. 96.
    K. Masek, P. Horak, O. Kadlec and M. Flegel, The interactions between neuroendocrine and immune systems at the receptor level. The possible role of serotonergic system, in: “Interactions Among Central Nervous System, Neuroendocrine and Immune Systems,” J. W. Hadden, K. Masek and G. Nistico, eds., Pythagora Press, Rome, Italy (1989).Google Scholar
  97. 97.
    N. Vekshina and S.V. Magaeva, Changes in the serotonin concentration in the limbic structures of the brain during immunization, Bull. Exp. Biol. Med. 77:625 (1974).PubMedGoogle Scholar
  98. 98.
    A. Szentivanyi, L. D. Prockop and S. M. Brooks, Immune-neuroendocrine circuitry: component parts, biochemical control mechanisms and implications for atopic diseases, Immunopharmacol. Rev., in preparation (1994).Google Scholar
  99. 99.
    A. Szentivanyi, M. E. Schwartz, S. Reiner, O. Heim, E. Calder’on, C. Abarca and L. D. Prockop, The nature of the central and peripheral adrenergic mechanisms involved in the induction of the de novo synthesis of histidine decarboxylase in hemopoietic progenitor cells of bone marrow, in preparation (1994).Google Scholar
  100. 100.
    A. Szentivanyi, M. E. Schwartz, O. Heim, S. Reiner, E. Calder’on, K. Ali, C. Abarca and L. D. Prockop, Dissociation in the time development of adrenergically active beta-arrestin and IL-1a receptor antagonist versus IL-1a in the phenotypical change in T-cell subsets, in preparation (1994).Google Scholar
  101. 101.
    A. Szentivanyi, A. Engel, O. Heim, H. Wagner, E. Calderon, L. D. Prockop and C. Abarca, The regulatory effect of interleukin-1a derived from T-memory cells on neuropeptide (substance P, neuropeptide Y) expression in the ganglion Schwann cell of the rat, in preparation (1994).Google Scholar
  102. 102.
    A. Szentivanyi, J. F. Hackney, O. Heim, S. Robicsek, E. Calder’on, L. D. Prockop, K. AH and C. Abarca, Cultured human cell lines which do or do not respond to lymphocyte conditioned medium of human CD4+ CD45RO+ induction of beta2-adrenoceptor and beta2-adrenergic receptor mRNA synthesis with a parallel dissociation in the induction of tyrosin hydroxylase mRNA, in preparation (1994).Google Scholar
  103. 103.
    K. Ah, E. Calderon, S. M. Brooks, R. G. Coffey, R. F. Lockey and A. Szentivanyi, Modulation of beta-adrenergic responsiveness of A549 human pulmonary epithelial cells by IgE, in preparation (1994).Google Scholar
  104. 104.
    A. Szentivanyi, Adrenergic regulation, in: “Bronchial Asthma — Mechanisms and Therapeutics,” E. B. Weiss and M. Stein, eds., Little, Brown and Company, Boston (1993).Google Scholar
  105. 105.
    M.A. Lochrie and M.I. Simon, G protein multiplicity in eukaryotic signal transduction systems, Biochemistry 17:4957 (1988).CrossRefGoogle Scholar
  106. 106.
    L. Birnbaumer and A.M. Brown, G proteins and the mechanism of action of hormones, neurotransmitters, and autocrine and paracrine regulatory factors, Am. Rev. Respir Dis. 141:S106 (1990).CrossRefGoogle Scholar
  107. 107.
    G.M. Morris, J.R. Hadcock and C.C. Malbon, Cross-regulation between G-protein-coupled receptors. Activation of β2-adrenergic receptors increases al-adrenergic receptor mRNA levels, J. Biol. Chem. 266(4):2233 (1991).PubMedGoogle Scholar
  108. 108.
    J.R. Hadcock, J.D. Port and C.C. Malbon, Cross-regulation between G-protein mediated pathways. Activation of the inhibitory pathway of adenylyl/cyclase increases the expression of β2-adrenergic receptors, J. Biol Chem. 266(18): 11915 (1991).PubMedGoogle Scholar
  109. 109.
    E.A. Korneva and V.M. Klimenko, Neuronale hypothalamusaktivitt und homoostatische rektionen, Ergebn. Exp. Med. 23:373 (1976).Google Scholar
  110. 110.
    H.O. Besedovsky, E. Sorkin, D. Felix and H. Haas, Hypothalamic changes during the immune response, Eur. J. Immunol. 7:325 (1977).CrossRefGoogle Scholar
  111. 111.
    Z. Srebro, I. Spisak-Plonka and E. Szirmai, Neurosecretion in mice during skin allograft rejection, Agressologie 15:125 (1974).PubMedGoogle Scholar
  112. 112.
    G.C. Cotzias and L.C. Tang, Adenylate cyclase of brain reflects propensity for breast cancer in mice, Science 197:1094 (1977).PubMedCrossRefGoogle Scholar
  113. 113.
    A.J. Dunn, M.L. Powell, W.V. Moreshead, J.M. Gaskin and N.R. Hall, N.R., Effects of Newcastle disease virus administration to mice on the metabolism of cerebral biogenic amines, plasma corticosterone, and lymphocyte proliferation, Brain Behav. Evol. 1:216 (1987).Google Scholar
  114. 114.
    B.M.R.N.J. Woloski, E.M. Smith, W.J. Meyer, G.M. Fuller and J.E. Blalock, Corticotropin- releasing activity of monokines, Science 230:1035 (1985).PubMedCrossRefGoogle Scholar
  115. 115.
    E.W. Bernton, J.E. Beach, J.W. Holaday, R.C. Smallridge and H.G. Fein, Release of multiple hormones by direct action of interleukin-1 on pituitary cells, Science 238:519 (1987).PubMedCrossRefGoogle Scholar
  116. 116.
    P. Kehrer, D. Turnill, J.-M. Dayer, A.F. Muller and R.C. Gaillard, Human recombinant interleukin-1β and-a, but not recombinant tumor necrosis factor-a stimulate ACTH release from rat anterior pituitary cells in vitro in a prostaglandin E2 and cAMP independent manner, Neuroendocrin. 48:160 (1988).CrossRefGoogle Scholar
  117. 117.
    V. Rettori, J. Jurcovicova and S.M. McCann, Central action of interleukin-1 in altering the release of TSH, growth hormone and prolactin in the male rat, J. Neurosci. Res. 18:179 (1987).PubMedCrossRefGoogle Scholar
  118. 118.
    D. Giulian and L.B. Lachman, Interleukin-1 stimulation of astroglial proliferation after brain injury, Science 228:497 (1985).PubMedCrossRefGoogle Scholar
  119. 119.
    D.E. Scarborough, S.L. Leo, C.A. Dinarello and S. Reichlin, Interleukin-1β stimulates somatostatin biosynthesis in primary cultures of fetal rat brain, Endocrinology 124:549 (1989).PubMedCrossRefGoogle Scholar
  120. 120.
    M. Fukuoka, K. Yasuda, S. Taii, K. Takakura and T. Mori, Interleukin-1 stimulates growth and inhibits progesterone secretion in cultures of porcine granulosa cells, Endocrinology 124:884 (1989).PubMedCrossRefGoogle Scholar
  121. 121.
    R. Sapolsky, C. Rivier, G. Yamamoto, P. Plotsky and W. Vale, Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1, Science 238:522 (1987).PubMedCrossRefGoogle Scholar
  122. 122.
    F. Berkenbosch, J. van Oers, A. Del Rey, F. Tilders and H. Besedovsky, Corticotropin-releasing factor producing neurons in the rat activated by interleukin-1, Science 238:524 (1987).PubMedCrossRefGoogle Scholar
  123. 123.
    W.L. Farrar, P.L. Kilian, M.R. Ruff, J.M. Hill and C.B. Pert, Visualization and characterization of interleukin-1 receptors in brain, J. Immunol. 139:459 (1987).PubMedGoogle Scholar
  124. 124.
    W.S. Zawalich, K.C. Zawalich and H. Rasmussen, Interleukin-1a exerts glucose-dependent stimulatory and inhibitory effects on islet cell phosphoinositide hydrolysis and insulin secretion, Endocrinology 124:2350 (1989).PubMedCrossRefGoogle Scholar
  125. 125.
    R.P. Cornell, Central interleukin-1 elicited hyperinsulinemia is mediated by prostaglandin but not autonomics, Am. J. Physiol. 257:R839 (1989).Google Scholar
  126. 126.
    A. Del Rey and H. Besedovsky, Antidiabetic effects of interleukin-1, Proc. Natl. Acad. Sci. USA 86:5943 (1989).PubMedCrossRefGoogle Scholar
  127. 127.
    E.N. Benveniste and J.E. Merrill, Stimulation of oligodendroglial proliferation and maturation by interleukin-2, Nature 321:610 (1986).PubMedCrossRefGoogle Scholar
  128. 128.
    L.R. Smith, S.L. Brown and J.E. Blalock, Interleukin-2 induction of ACTH secretion: presence of an interleukin-2 receptor a-chain-like molecule on pituitary cells, J. Neuroimmunol. 21:249 (1989).PubMedCrossRefGoogle Scholar
  129. 129.
    B. Sherry and A. Cerami, Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses, J. Cell Biol. 107:1269 (1988).PubMedCrossRefGoogle Scholar
  130. 130.
    Y. Naitoh, J. Fukata, T. Tominaga, Y. Nakai, S. Tami, K. Mori and H. Imura, Interleukin-6 stimulates the secretion of adrenocorticotropic hormone in conscious, freely-moving rats, Biochem. Biophys. Res. Commun. 155:1459 (1988).PubMedCrossRefGoogle Scholar
  131. 131.
    E. M. Sternberg, Monokines, lymphokines and the brain, in: “The Year in Immunology,” J. M. Cruse and J. E. Lewis, eds., Karger, Basel (1989).Google Scholar
  132. 132.
    K. Mealy, B.G. Robinson, J.A. Majzoub and D.W. Wilmore, Hypothalamic-pituitary-adrenal (HPL) axis regulation by tumor necrosis factor, Prog. Leukocyte Biol. 10B:225 (1990).Google Scholar
  133. 133.
    B.L. Spangelo, A.M. Judd, P.C. Ross, I.S. Login, W.D. Jarvis, M. Badamchian, A.L. Goldstein and R.M. MacLeod, Thymosin fraction 5 stimulates prolactin and growth hormone release from anterior pituitary cells in vitro, Endocrinology 121:2035 (1987).PubMedCrossRefGoogle Scholar
  134. 134.
    D.Y.M. Leung and R.S. Geha, Regulation of the human IgE antibody response, Int. Rev. Immunol. 2:75 (1987).PubMedCrossRefGoogle Scholar
  135. 135.
    A. Miyajima, S. Miyatake and J. Schreurs, Coordinate regulation of immune and inflammatory responses by T-cell-derived lymphokines, FASEB J. 2:2462 (1988).PubMedGoogle Scholar
  136. 136.
    A.G. Lopez, C.J. Sanderson, J.R. Gamble, H.D. Campbell, I.G. Young and M.A. Vadas, Recombinant human interleukin 5 is a selective activator of human eosinophil function, J. Exp. Med. 167:219 (1988).PubMedCrossRefGoogle Scholar
  137. 137.
    M.E. Rothenberg, W.F. Owen, D.S. Silberstein, R.J. Soberman, K.F. Austen and R.L. Stevens, Human eosinophils have prolonged survival, enhanced functional properties and become hypodense when exposed to human interleukin-3, J. Clin. Invest. 81:1986 (1988).PubMedCrossRefGoogle Scholar
  138. 138.
    W.F. Owen, M.E. Rothenberg and D.S. Silberstein, Regulation of human eosinophil viability, density, and function by granulocyte/macrophage colony-stimulating factor in the presence of 3T3 fibroblasts, J. Exp. Med. 166:129 (1987).PubMedCrossRefGoogle Scholar
  139. 139.
    A.B. Kay, Leucocytes in asthma, Immunol. Invest. 17:679 (1988).PubMedCrossRefGoogle Scholar
  140. 140.
    F. Lee, T. Yokota, T. Otsuka, P. Meyerson, D. Villaret, R. Coffman, T. Mosmann, D. Rennick, N. Roehm, C. Smith, A. Zlotnik and K. Arai, Isolation and characterization of a mouse interleukin cDNA clone that expresses B cell stimulatory factor-1 activities and T-cell and mast cell-stimulating activities, Proc. Natl. Acad. Sci. USA 83:2061 (1986).PubMedCrossRefGoogle Scholar
  141. 141.
    A.B. Kay, T-lymphocytes and their products in atopic allergy and asthma, Int. Arch. Allergy Appl Immunol 94:189 (1991).PubMedCrossRefGoogle Scholar
  142. 142.
    J.W. Crump, R.J. Pueringer and G.W. Hunninghake, Bronchoalveolar lavage and lymphocytes in asthma, Eur. Respir. I. 4(Suppl 13):39s (1991).Google Scholar
  143. 143.
    A.J. Frew, C.J. Corrigan, P. Maestrelli, J.J. Tsai, K. Kurihara, R.E. O’Hehir, A. Hartnell, O. Cromwell and A.B. Kay, T lymphocytes in allergen-induced late-phase reactions and asthma, Int. Arch. Allergy Appl. Immunol. 88:63 (1989).PubMedCrossRefGoogle Scholar
  144. 144.
    G. Delespesse, M. Sarfati, and R. Peleman, Influence of recombinant IL-4, IFN-a and IFN-c on the production of human IgE binding factor (soluble CD23), J. Immunol. 142:134 (1989).PubMedGoogle Scholar
  145. 145.
    Y. Yanagihara, K. Kajiwara, M. Kiniwa, Y. Yui, T. Shida and G. Delespesse, Enhancement of IgE synthesis and histamine release by T-cell factors derived from atopic patients with bronchial asthma, J. Allergy Clin. Immunol. 79:448 (1987).PubMedCrossRefGoogle Scholar
  146. 146.
    R. Alam, J. Rozniecki and K. Selmaj, A mononuclear cell-derived histamine-releasing factor (HRF) in asthmatic patients. I. Histamine release from basophils in vitro, Ann. Allergy 53:66 (1984).PubMedGoogle Scholar
  147. 147.
    R. Alam and J. Rozniecki, A mononuclear cell-derived histamine-releasing factor (HRF) in asthmatic patients. II. Activity in vivo, Allergy 40:124 (1985).PubMedCrossRefGoogle Scholar
  148. 148.
    R. Alam, J.A. Grant and M.A. Lett-Brown, Identification of a histamine-release inhibitory factor produced by human mononuclear cells in vitro, J. Clin. Invest. 82:2056 (1988).PubMedCrossRefGoogle Scholar
  149. 149.
    A.J.M. Van Oosterhout and F.P. Nijkamp, Lymphocytes and bronchial hyperresponsiveness, Life Sci. 46:1255 (1990).PubMedCrossRefGoogle Scholar
  150. 150.
    F.P. Nijkamp and P.A.J. Henricks, Beta-adrenoceptors in lung inflammation, Am. Rev. Respir. Dis. 141:145s (1990).Google Scholar
  151. 151.
    C. Walker, M.K. Kaegi, P. Braun and K. Blaser, Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity, J. Allergy Clin. Immunol. 88:935 (1991).PubMedCrossRefGoogle Scholar
  152. 152.
    B.L. Bradley, M. Azzawi, M. Jacobson, B. Assoufi, J.V. Collins, A.-M. Irani, L.B. Schwartz, S.R. Durham, P.K. Jeffery and A.B. Kay, Eosinophils, T-lymphocytes, mast cells, neutrophils, and macrophages in bronchial biopsy specimens from atopic subjects with asthma: comparison with biopsy specimens from atopic subjects without asthma and normal control subjects and relationship to bronchial hyperresponsiveness, J. Allergy Clin. Immunol. 88:661 (1991).PubMedCrossRefGoogle Scholar
  153. 153.
    S.E. Frigas, D.A. Loegering and G.J. Gleich, Cytotoxic effects of the guinea pig eosinophil major basic protein on tracheal epithelium, Lab. Invest. 43:35 (1980).Google Scholar
  154. 154.
    G.J. Gleich, E. Frigas, D.A. Loegering, D.L. Wassom and D. Steinmuller, Cytoxic properties of the eosinophil major basic protein, J. Immunol. 123:2925 (1979).PubMedGoogle Scholar
  155. 155.
    Q.A. Hamid, J.C.W. Mak, M.N. Sheppard, B. Corrin, J.C. Venter and P.J. Barnes, Localization of beta2-adrenoceptor messenger RNA in human and rat lung using in situ hybridization: correlation with receptor autoradiography, Eur. I. Pharmacol. 206:133 (1991).CrossRefGoogle Scholar
  156. 156.
    I. Enander, S. Ahlstedt, H. Nygren and B. Bjorksten, Sensitizing ability of derivatives of picryl chloride after exposure of mice on the skin and in the lung, Int. Arch. Allergy Appl. Immunol. 72:59 (1983).PubMedCrossRefGoogle Scholar
  157. 157.
    J. Garssen, F.P. Nijkamp, H. Van der Vliet and H. Van Loveren, T-cell mediated induction of airway hyperreactivity in mice, Am. Rev. Respir. Dis. 144:931 (1991).PubMedCrossRefGoogle Scholar
  158. 158.
    G. Folkerts, P.A.J. Henricks, P.J. Slootweg and F.P. Nijkamp, Endotoxin-induced inflammation and injury of the guinea pig respiratory airways cause bronchial hyporeactivity, Am. Rev. Respir. Dis. 137:1441 (1988).PubMedCrossRefGoogle Scholar
  159. 159.
    R. Pauwels, R. Peleman and M. Van Der Straeten, Airway inflammation and non-allergic bronchial responsiveness, Eur. J. Respir. Dis. 68:137 (1986).Google Scholar
  160. 160.
    C. Murías and J.H. Roum, Bronchial hyperactivity occurs in steroid-treated guinea pigs depleted of leukocytes by cyclophosphamide, J. Appl. Physiol. 58:1630 (1985).Google Scholar
  161. 161.
    J.E. Thompson, I.A. Scypinski, T. Gordon and D. Sheppard, Hydroxyurea inhibits airway hyperresponsiveness in guine pigs by a granulocyte-independent mechanism, Am. Rev. Respir. Dis. 134:1213 (1986).PubMedGoogle Scholar
  162. 162.
    W. Cibulas, S.M. Brooks, C.G. Murías, M.L. Miller and R.T. McKay, Toluene diisocyanate-induced airway hyperreactivity in guinea pigs depleted of granulocytes, J. Appl. Physiol. 64:1773 (1988).PubMedGoogle Scholar
  163. 163.
    C.L. Rochester and J.A. Rankin, Is asthma T-cell mediated? Aim. Rev. Respir. Dis. 144:1005 (1991).CrossRefGoogle Scholar
  164. 164.
    A. Szentivanyi, The beta-adrenergic theory of the atopic abnormality in bronchial asthma, J. Allergy 42:203 (1968).CrossRefGoogle Scholar
  165. 165.
    A.F. Barker, C.A. Hirshman, R. D’Silva and J.M. Hanifin, Airway responsiveness in atopic dermatitis, J. Allergy Clin. Immunol. 87:780 (1991).PubMedCrossRefGoogle Scholar
  166. 166.
    R.J. Hopp, R.G. Townley, R.E. Biven, A.K. Bewtra and N.M. Nair, The presence of airway reactivity before the development of asthma, Am. Rev. Respir. Dis. 141:2 (1990).PubMedCrossRefGoogle Scholar
  167. 167.
    A.J.M. Van Oosterhout and F.P. Nijkamp, Effect of lymphokines on beta-adrenoceptor function of human peripheral blood mononuclear cells, Br. J. Clin. Pharmacol. 30:150S (1990).Google Scholar
  168. 168.
    R.J. Hopp, A.K. Bewtra, N.M. Nair and R.G. Townley, Specificity and sensitivity of methacholine inhalation challenge in normal and asthmatic children, J. Allergy Clin. Immunol. 74:154 (1984).PubMedCrossRefGoogle Scholar
  169. 169.
    R.A. Pauwels, Genetic factors controlling airway responsiveness, Clin. Rev. Allergy 7:235 (1989).PubMedGoogle Scholar
  170. 170.
    T. Chonmaitree, M.A. Lett-Brown and J.A. Grant, Respiratory viruses induce production of histamine-releasing factor by mononuclear leukocytes: a possible role in the mechanism of virus-induced asthma, J. Infect. Dis. 164:592 (1991).PubMedCrossRefGoogle Scholar
  171. 171.
    F. A. Ennis, A. S. Beare, D. Riley, G. C. Schild, A. Meager, Q. Yi-Hua, G. Schwarz and A. H, Rook, Interferon induction and increased natural killer cell activity — influenza infections in man, Lancet ii:891 (1981).CrossRefGoogle Scholar
  172. 172.
    F.H. Valone and L.B. Epstein, Biphasic platelet activating factor synthesis by human monocytes stimulated with IL-1β, tumor necrosis factor or interferon-c, J. Immunol. 141:3945 (1988).PubMedGoogle Scholar
  173. 173.
    M.G. O’Sullivan, N.J. MacLachlan, L.N. Fieischer, N.C. Olson and T.T. Brown, Modulation of arachidonic acid metabolism by bovine alveolar macrophages exposed to interferons, J. Leukocyte Biol. 44:116 (1988).Google Scholar
  174. 174.
    S. Mattoli, S. Miante, F. Calabro, M. Mezzetti, A. Fasoli and L. Allegra, Bronchial epithelial cells exposed to isocyanates potentiate activation and proliferation of T cells, Am. J. Physiol. 259:L320 (1990).Google Scholar
  175. 175.
    S. Robicsek, A. Szentivanyi, E.G. Calderon, O. Heim, P. Schultze, H. Wagner, R.F. Lockey and J.J. Dwornik, Concentrated IL-1a derived from human T-lymphocytes binds to a specific single class surface receptor on human bronchial epithelial cells and induces the production of beta-adrenoceptor mRNA via an associated or separate receptor-linked signalling pathway, J. Allergy Clin. Immunol. 89:212 (1992).Google Scholar
  176. 176.
    T. Szentendrei, T. Nakane, E. Lazarj-Wesley, M. Virmani and G. Kunos, Regulation of beta-adrenergic receptor gene expression by interleukin-1, The Pharmacologist 33:225 (1991).Google Scholar
  177. 177.
    A. Szentivanyi, E.G. Calderon, O. Heim, P. Schultze, H. Wagner, J. Zority, R.F. Lockey, J.J. Dwornik and S. Robicsek, Cell- and species-specific dissociation in the beta-adrenoceptor upregulating effects of IL-1a derived from lymphocyte conditioned medium and Cortisol, J. Allergy Clin. Immunol. 89:274 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Andor Szentivanyi
    • 1
  • Christine M. Abarca
    • 1
  1. 1.Departments of Internal Medicine, Neurology, Pharmacology, and Environmental and Occupational HealthUniversity of South Florida Colleges of Medicine and Public HealthTampaUSA

Personalised recommendations