Lipid Saturation in the Target Cells Plasma Membrane Blocks Tumor Necrosis Factor Mediated Cell Killing

  • Erno Duda
  • Śandor Benko
  • Ibolya Horv́ath
  • Erzśebet Galiba
  • Tibor Ṕali
  • Ferenc Jóo
  • Ĺaszĺo Vígh
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)

Summary

Destruction of sensitive tumor cells by tumor necrosis factor (TNF) is greatly influenced by the composition and the physical state of the lipids within the plasma membrane of the target cells. Experimental conditions that reduce the fluidity of the lipid bilayer of the membrane decrease or completely abolish TNF sensitivity of the target cells. One possible explanation for this phenomenon is the restricted availability of ceramide and arachidonic acid containing phospholipids to enzymes mediating the effects of TNF or decreased activity of the enzymes towards these phospholipids in membranes of decreased fluidity. Since microviscosity and lipid composition of the plasma membrane is known to be altered by the diet and by mediators derived from the neuro-endocrine and the immune systems, the physiological significance of these findings is clear. This phenomenon might also serve as a basis for better treatments for malignant diseases.

Keywords

Tumor Necrosis Factor L929 Cell Spin Label Catalytic Hydrogenation Spin Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A. Carswell, L.J. Old, R.L. Kassel, S. Green, N. Fiore and B. Williamson, An endotoxin-induced serum factor that causes necrosis of tumors, Proc. Natl. Acad. Sci. USA 72:3666 (1975).PubMedCrossRefGoogle Scholar
  2. 2.
    B.B. Aggarwal, W.J. Kohr, P.E. Hass, B. Moffat, S.A. Spencer, W.J. Henzel, T.S. Bringman, G.E. Nedwin, D.V. Goeddel and R.N. Harkins, Human tumor necrosis factor, J. Biol. Chem. 260:2345 (1985).PubMedGoogle Scholar
  3. 3.
    B.J. Sugarman, G.G. Aggarwal, P.E. Hass, I.S. Figari, M.A. Palladino, M.M. Shephard, Recombinant human TNF alpha: effects on proliferation of normal and transformed cells in vitro. Science 230:943 (1985).CrossRefGoogle Scholar
  4. 4.
    C. Peetre, U. Gullbert, E. Nilson and J. Olson, Effects of recombinant TNF on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro., J. Clin. Invest. 78:1694 (1986).CrossRefGoogle Scholar
  5. 5.
    B. Williamson, E.A. Carswell, B.Y. Rubin, J.S. Prendergast and L.J. Old, Human TNF produced by human B cell lines: Synergistic cytotoxic interaction with human interferon gamma, Proc. Natl. Acad. Sci. USA 80:5397 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    C.S. Johnson, M. Chang and P. Furmanski, In vivo hematopoietic effects of TNF alpha in normal and erythroleukemic mice: characterization and therapeutic applications, Blood 72:1875 (1988).PubMedGoogle Scholar
  7. 7.
    F.C. Kuli, S. Jacobs and P. Cuatrecasas, Cellular receptor for 125I labeled TNF: Specific binding, affinity labeling and relationship to sensitivity, Proc. Natl. Acad. Sci. USA 82:5756 (1985).CrossRefGoogle Scholar
  8. 8.
    B.Y. Rubin, S.L. Anderson, S.A. Sulliman, B. Williamson, E.A. Carswell and L.J. Old, High affinity binding of 125I human TNF (LuKII) to specific cell surface receptors, J. Exp. Med. 162:1099 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Tsujimoto, Y.K. Yip and J. Vilcek, TNF: Specific binding and internalization in sensitive and resistant cells, Proc. Natl. Acad. Sci. USA 82:7626 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Loetscher, E.J. Schlaeger, H.W. Lahm, Y.C.E. Pan, W. Lesslauer and M. Brockhaus, Purification and partial amino acid sequence analysis of two distinct TNF receptors from HL60 cells, J. Biol. Chem. 265:20131 (1990).PubMedGoogle Scholar
  11. 11.
    L.M. Obeid, D.M. Linardic, L.A. Karolak and YA. Hannun, Programmed cell death induced by ceramid, Science 259:1769 (1983).CrossRefGoogle Scholar
  12. 12.
    F. Jófo, N. Balogh, L.I. Horv́ath, G. Filep, I. Horv́ath and L. Vigh, L., Complex hydrogenation/oxidation reactions of the water-soluble hydrogenation catalyst palladium di(sodium alizarinmonosufonate) and details of homogenous hydrogenation of lipids in isolated biomem-branes and living cells, Anal. Biochem. 194:34 (1991).CrossRefGoogle Scholar
  13. 13.
    K. Chen, P.D. Morse, II and H.M. Swarts, Kinetics of enzyme-mediated reduction of lipid soluble nitroxide spin labels by living cells, Biochem. Biophys. Acta 943:477 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    O.H. Griffith and P.C. Jost, Lipid spin labels in biological membranes, in: “Spin Labeling: Theory and Applications,” L.J. Berliner, ed., Acad. Press, New York (1976).Google Scholar
  15. 15.
    K. Frei, C. Siepl, P. Groscurth, S. Bodmer, C. Schwerdel and A. Fontana, Interleukin-HP-1 related hybridoma and plasmacytoma growth factors induced by lipopolysaccharide in vivo, Eur. J. Immunol. 17:1217 (1987).CrossRefGoogle Scholar
  16. 16.
    M. Schlame, L. Horvath and L. Vigh, Relation between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species, Biochem. J. 265:79 (1990).PubMedGoogle Scholar
  17. 17.
    S. Benkb, H.J. Hilkmann, L. Vigh and W.J. van Blitterswijk, Catalytic hydrogenation of fatty acid chains in plasma membranes: effect of membrane lipid fluidity and expression of cell surface antigens, Biochem. Biophys. Acta 896:129 (1987).CrossRefGoogle Scholar
  18. 18.
    L. Vigh, I. Horvath and G.A. Thompson, Jr., Recovery of Dunaliella salina cells following hydrogenation of lipids in specific membranes by a homogenous palladium catalyst, Biochem. Biophys. Acta 937:42 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    R. Kannagi and K. Koisumi, Effect of different physical states of phospholipid substrates on partially purified platelet phospholipase A2 activity, Biochem. Biophys. Acta 556:423 (1979).PubMedCrossRefGoogle Scholar
  20. 20.1.
    Horv́ath, L. Vigh, T. Ṕali and GA. Thompson, Jr., Effect of catalytic hydrogenation of Tetrahymena ciliary phospholipid fatty acids on ciliary phospholipase A activity, Biochem. Biophys. Acta 1002:409 (1989).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Schlame, I. Horv́ath, Zs. ṪoͲ̈ok, L.I. Horv́ath and L. Vigh, Intramembraneous hydrogenation of mitochondrial lipids reduces the substrate availability but not the enzyme activity of endogenous phospholipase A. The role of polyunsaturated phospholipid species, Biochem. Biophys. Acta 1045:1 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    P. Suffys, R. Beyaert, F. Van Roy and W. Fiers, Reduced TNF-induced cytotoxicity by inhibitors of arachidonic acid metabolism, Biochem. Biophys, Res. Comm. 149:735 (1987).CrossRefGoogle Scholar
  23. 23.
    M-Y. Kim, C. Linardic, L. Obeid and Y. Hannun, Identification of sphingomyelin turnover as an effector mechanism for the action of TNF alpha and gamma IFN, J. Biol. Chem. 266:484 (1991).PubMedGoogle Scholar
  24. 24.
    K.A. Dressler, S. Mathias and R.N. Kolesnick, TNF alpha activates the sphingomyelin signal transduction pathway in a cell free system, Science 255:1715 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Erno Duda
    • 1
  • Śandor Benko
    • 3
  • Ibolya Horv́ath
    • 1
  • Erzśebet Galiba
    • 1
  • Tibor Ṕali
    • 2
  • Ferenc Jóo
    • 4
  • Ĺaszĺo Vígh
    • 1
  1. 1.Institute of BiochemistryMTA Biological CenterSzegedHungary
  2. 2.Institute of BiophysicsMTA Biological CenterSzegedHungary
  3. 3.Clinic of Internal MedicineA. Szent-Gyorgyi Medical SchoolSzegedHungary
  4. 4.Department of Physical ChemistryL. Kossuth University of DebrecenHungary

Personalised recommendations