The Role of Cytokines in Immune Neuroendocrine Interactions

  • Hugo O. Besedovsky
  • Adriana del Rey
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)


In order to consider the interaction of immune and neuroendocrine systems, the following facts should be taken into account, (a) The immune system is capable of processing and responding to an enormous amount of information. Indeed, the immune system is surpassed only by the central nervous system (CNS) in terms of complexity, (b) The immune system participates in both physiological and pathological processes, and (c) both the immune and neuroendocrine systems are constantly in operation. Several soluble mediators released by the immune system have already been identified as messengers carrying afferent signals towards the CNS and there is little doubt that additional messengers will be found. Lymphokines, monokines, certain complement split products, immunoglobulins, histamine, serotonin, mediators of inflammation, thymic hormones, etc. are possible candidates for immune-CNS communication. Thus, it is possible that these messengers would carry information to the CNS about the type of immune response in operation, whereas the site of the response could be signaled through the local stimulation of nerve fibers by immune cell products released in their vicinity. The existence of afferent pathways from the immune system to the CNS implies, as we have previously suggested, that the immune system is a receptor-sensory organ.


Newcastle Disease Virus Experimental Allergic Encephalomyelitis Sympathetic Innervation Glucocorticoid Level Endogenous Glucocorticoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ader, D. Feiten, and N. Cohen, eds., “Psychoneuroimmunology,” 2nd ed., Academic Press, New York (1991).Google Scholar
  2. 2.
    I. Berczi and K. Kovacs, eds., “Hormones and Immunity,” MTP Press, Lancaster, U.K. (1987).Google Scholar
  3. 3.
    N. Fabris, E. Garaci, V. Hadden, and N.A. Mitchison, eds., “Immunoregulation,” Plenum Press, New York (1983).Google Scholar
  4. 4.
    R. Guillemin, M. Cohn, and T. Melnechuk, eds., “Neural Modulation of Immunity,” Raven Press, New York (1985).Google Scholar
  5. 5.
    J.W. Hadden, K. Masek, and G. Nistico, eds., “Interactions Among CNS, Neuroendocrine and Immune Systems,” Pythagora Press, Rome (1989).Google Scholar
  6. 6.
    M.S. O’Dorisio and A. Panerai, eds. “Neuropeptides and Immunopeptides: Messengers in a Neuroimmune axis,” Ann. N.Y. Acad. Sci., New York (1990).Google Scholar
  7. 7.
    H.O. Besedovsky and A. del Rey, Immune-neuroendocrine circuits: integrative role of cytokines, in: “Frontiers in Neuroendocrinology,” W.F. Ganong and L. Martini, eds., Raven Press, NY (1992).Google Scholar
  8. 8.
    A. del Rey, H.O. Besedovsky, and E. Sorkin, Endogenous blood levels of corticosterone control the immunological cell mass and B cell activity in mice, J. Immunol. 133:572 (1984).PubMedGoogle Scholar
  9. 9.
    H.O. Besedovsky, A. del Rey, E. Sorkin, M. Da Prada, and HA. Keller, Immunoregulation mediated by the sympathetic nervous system, Cell. Immunol. 48:346 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    L. Miles, J. Quintans, E. Chelmicka-Schorr, and E.G.W. Arnason, The sympathetic nervous system modulates antibody response to thymus-independent antigens, J. Neuroimmunol 1:101 (1981).PubMedCrossRefGoogle Scholar
  11. 11.
    N.R. Hall, J.E. McClure, S.K. Hu, N.S. Tare, C.M. Seals, and A.L. Goldstein, Effects of 6-hydroxydopamine upon primary and secondary thymus dependent immune responses, Immunopharmacol. 5:39 (1982).CrossRefGoogle Scholar
  12. 12.
    K. Kasahara, S. Tanaka, T. Ito, and Y. Hamashima, Suppression of the primary immune response by chemical sympathectomy, Res. Commun. Chem. Pathol. Pharmacol. 16:687 (1977).PubMedGoogle Scholar
  13. 13.
    S. Livnat, S.Y. Feiten, S.L. Carlson, D.L. Bellinger, and D.L. Feiten, Involvement of peripheral and central catecholamine systems in neural-immune interactions, J. Neuroimmunol. 10:5 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Beutler, N. Krochin, I.W. Milsark, C. Luedke, and A. Cerami, Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance, Science 232:977 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    R.A. Daynes and B.A. Aranco, Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukin 2 and interleukin 4, Eur. J. Immunol. 19:2319 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Gillis, G.R. Crabtree, and K. Smith, Glucocorticoid-induced inhibition of T cell growth factor production. I. The effect on mitogen-induced lymphocyte proliferation, J. Immunol. 123:1624 (1979).PubMedGoogle Scholar
  17. 17.
    A. Kelso and A. Munck, Glucocorticoid inhibition of lymphokine secretion by alloreactive T lymphocyte clones, J. Immunol. 133:784 (1984).PubMedGoogle Scholar
  18. 18.
    D.S. Snyder and E.R. Unanue, Corticosteroids inhibit murine macrophage Ia expression and interleukin-1 production, J. Immunol. 129:1803 (1982).PubMedGoogle Scholar
  19. 19.
    S.M. Wahl, L.C. Altman, and D.L. Rosenstreich, Inhibition of in vitro lymphokine synthesis by glucocorticoids, J. Immunol. 115:476 (1975).PubMedGoogle Scholar
  20. 20.
    W.C. Koff, A.V. Fann, M.A. Dunegan, and L.B. Lachman, Catecholamine-induced suppression of interleukin-1 production, Lymphokine Res. 5:239 (1986).PubMedGoogle Scholar
  21. 21.
    R.N. Spengler, R.M. Allen, D.G. Remick, R.M. Strieter, and S.L. Kunkel, Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor, J. Immunol. 145:1430 (1990).PubMedGoogle Scholar
  22. 22.
    M. Lotz, J.H. Vaughan, and D.A. Carson, Effect of neuropeptides on the production ofinflammatory cytokines by human monocytes, Science 241:1218 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Muscettola and G. Grasso, Somatostatin and vasoactive intestinal peptide reduce interferon gamma production by human peripheral blood mononuclear cells, Immunobiology 180:419 (1990).PubMedCrossRefGoogle Scholar
  24. 24.
    L.E. Bermudez, M. Wu, and L.S. Young, Effect of stress-related hormones on macrophage receptors and response to tumor necrosis factor, Lymphokine Res. 9:137 (1990).PubMedGoogle Scholar
  25. 25.
    R.D. Feldman, G.W. Hunninghake, and W.L. McArdle, Beta-adrenergic-receptor-mediated suppression of interleukin 2 receptors in human lymphocytes, J. Immunol. 139:3355 (1987).PubMedGoogle Scholar
  26. 26.
    R. Hart, H. Dancygier, F. Wagner, H. Niedermeyer, and M. Classen, Substance P modulates lymphokine activities in supernatants of cultured human duodenal biopsies, Immunol. Lett. 19:133 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Rhodes, J. Ivanyi, and P. Cozens, Antigen presentation by human monocytes: effects of modifying major histocompatibility complex class II antigen expression and interleukin 1 production by using recombinant interferons and corticosteroids, Eur. J. Immunol. 16:370 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    L. Shen, P. Guyre, E. Ball, and M. Fanger, Glucocorticoid enhances gamma interferon effects on human monocyte antigen expression and ADCC, Clin. Exp. Immunol. 65:387 (1986).PubMedGoogle Scholar
  29. 29.
    E. Frohman, T. Frohman, B. Vayuvegula, S. Gupta, and S. van den Noort, Vasoactive intestinal polypeptide inhibits the expression of the MHC class II antigens on astrocytes, Neurol. Sci. 88:339 (1988).CrossRefGoogle Scholar
  30. 30.
    E. Frohman, B. Vayuvegula, S. Gupta, and S. van den Noort, Norepinephrine inhibits gamma-interferon-induced major histocompatibility class II (Ia) antigen expression on cultured astrocytes via beta-2-adrenergic signal transduction mechanisms, Proc. Natl. Acad. Sci. 85:1292 (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    W.R. Beisel, Magnitude of the host nutritional response to infection, Am. J. Clin. Nutrition 30:1236 (1977).Google Scholar
  32. 32.
    H.O. Besedovsky, E. Sorkin, M. Keller and J. Muller, Changes in blood hormone levels during the immune response, Proc. Soc. Exp. Biol. 150:466 (1975).PubMedGoogle Scholar
  33. 33.
    P.N. Shek and B.H. Sabiston, Neuroendocrine regulation of immune processes: changes in circulating corticosterone levels induced by the primary antibody response in mice, Int. J. Immunopharmacol. 5:23 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    H.O. Besedovsky and A. del Rey, Mechanism of virus-induced stimulation of the hypothalamus-pituitary-adrenal axis, J. Steroid Biochem. 34:235 (1989).PubMedCrossRefGoogle Scholar
  35. 35.
    H.O. Besedovsky, A. del Rey, E. Sorkin, and C.A. Dinarello, Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science 233:652 (1986).PubMedCrossRefGoogle Scholar
  36. 36.
    A.J. Dunn, M.L. Powell, W.V. Moreshead, J.M. Gaskin, and N.R. Hall, Effect of Newcastle Disease Virus administration to mice on the metabolism of cerebral monoamines, plasma corticosterone and lymphocyte proliferation, Brain Behav. Immun. 1:216 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    K. Nakano, S. Suzuki, and C. Oh, Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin, Brain Behav. Immun. 1:159 (1987).PubMedCrossRefGoogle Scholar
  38. 38.
    R. de Rijk, N. van Rooijen, H. Besedovsky, A. del Rey, and F. Berkenbosch, Selective depletion of macrophages prevents pituitary-adrenal activation in response to subpyrogenic but not to pyrogenic doses of bacterial endotoxin in rats, Endocrinology 129:330 (1991).CrossRefGoogle Scholar
  39. 39.
    C. Rivier, R. Chizzonite, and W. Vale, In the mouse, the activation of the hypothalamic-pituitary-adrenal axis by a lipopolysaccharide (endotoxin) is mediated through interleukin-1, Endocrinology 125:2800 (1989).PubMedCrossRefGoogle Scholar
  40. 40.
    H.O. Besedovsky, A. del Rey, M. Schardt, E. Sorkin, S. Normann, J. Baumann and J. Girard, Changes in plasma hormone profile after tumor transplantation into syngeneic and allogeneic rats, Int. J. Cancer 36:209 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Normann, H.O. Besedovsky, M. Schardt, and A. del Rey, Hormonal changes following tumor transplantation and the relationship of corticosterone to tumor induced anti-inflammation, Int. J. Cancer 41:850 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Normann, H.O. Besedovsky, M. Schardt, and A. del Rey, Interactions between endogenous glucocorticoids and inflammatory responses in normal and tumor bearing mice: role of T cells, J. Leukocyte Biol. 44:551 (1988).PubMedGoogle Scholar
  43. 43.
    M. Neidhart and D.F. Larson, Freund’s complete adjuvant induces ornithine decarboxylase activity in the central nervous system of male rats and triggers the release of pituitary hormones, J. Neuroimmunol. 26:97 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    H.O. Besedovsky, A. del Rey, and E. Sorkin, Immunnoneuroendocrine interactions, J. Immunol. 135S:750s (1985).Google Scholar
  45. 45.
    F.J. Mackenzie, J.P. Leonard, and M.L. Cuzner, Changes in lymphocyte b-adrenergic receptor density and norepinephrine content of the spleen are early indicators of immune reactivity in acute experimental allergic encephalomyelitis in the Lewis rat, J. Neuroimmunol. 23:93 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    A. del Rey, H.O. Besedovsky, E. Sorkin, M. Da Prada, and S. Arrenbrecht, Immunoregulation mediated by the sympathetic nervous system II, Cell. Immunol. 63:329 (1981).PubMedCrossRefGoogle Scholar
  47. 47.
    H.O. Besedovsky, E. Sorkin, D. Felix, and H. Haas, Hypothalamic changes during the immune response, Eur. J. Immunol. 7:323 (1977).PubMedCrossRefGoogle Scholar
  48. 48.
    D. Saphier, O. Abramsky, G. Mor, and H. Ovadia, Multiunit electrical activity in conscious rats during an immune response, Brain Behav. Immun. 1:40 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    H.O. Besedovsky, A. del Rey, E. Sorkin, M. Da Prada, R. Burri, and C.G. Honegger, The immune response evokes changes in brain noradrenergic neurons, Science 221:564 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    S.L. Carlson, D.L. Feiten, S. Livnat, and S.Y. Feiten, Alterations of monoamines in specific central autonomic nuclei following immunization in mice, Brain Behav. Immun. 1:52 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    H.O. Besedovsky, A. del Rey, and E. Sorkin, Lymphokine containing supernatants from con A-stimulated cells increase corticosterone blood levels, J. Immunol. 126:385 (1981).PubMedGoogle Scholar
  52. 52.
    F. Berkenbosch, D.E.C. de Goeij, A. del Rey, and H. Besedovsky, Neuroendocrine, sympathetic and metabolic responses induced by interleukin-1, Neuroendocrinology 50:570 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    F. Berkenbosch, J. Van Oers, A. del Rey, F. Tilders, and H.O. Besedovsky, Corticotropin releasing factor producing neurons in the rat are activated by interleukin-1, Science 238:524 (1987).PubMedCrossRefGoogle Scholar
  54. 54.
    R. Sapolsky, C. Rivier, G. Yamamoto, P. Plotsky, and W. Vale, Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor, Science 238:522 (1987).PubMedCrossRefGoogle Scholar
  55. 55.
    A. Uehara, P.E. Gottschall, R.R. Dahl, and A. Arimura, Interleukin-1 stimulates ACTH release by an indirect action which requires endogenous corticotropin releasing factor, Endocrinology 121:1580 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    E.W. Bernton, J.E. Beach, J.W. Holaday, R.C. Smallridge, and H.G. Fein, Release of multiple hormones by a direct action of interleukin-1 on pituitary cells, Science 238:519 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    P. Kehrer, D. Turnill, J-M. Dayer, A.F. Muller, and R.C. Gaillard, Human recombinant interleukin-1 beta and -alpha, but not recombinant tumor necrosis factor alpha stimulate ACTH release from rat anterior pituitary cells in vitro in a prostaglandin E2 and cAMP independent manner, Neuroendocrinology 48:160 (1988).PubMedCrossRefGoogle Scholar
  58. 58.
    F. Holsboer, G.K. Stalla, U. von Bardeleben, K. Hamman, H. Muller, and OA. Muller, Acute adrenocortical stimulation by recombinant gamma interferon in human controls, Life Sci. 42:1 (1988).PubMedCrossRefGoogle Scholar
  59. 59.
    B.M. Sharp, S.G. Matta, P.K. Peterson, R. Newton, C. Chao, and K. McAllen, Tumor necrosis factor-alpha is a potent ACTH secretagogue: comparison to interleukin-1 beta, Endocrinology 124:3131 (1989).PubMedCrossRefGoogle Scholar
  60. 60.
    G.V. Vahouny, E. Kyeyune-Nyombi, J.P. McGillis, N.S. Tare, K.-Y. Huang, R. Tombes, A.L. Goldstein and N.R. Hall, Thymosin peptides and lymphomonokines do not directly stimulate adrenal corticosteroid production in vitro, J. Immunol. 130:791 (1983).PubMedGoogle Scholar
  61. 61.
    H.O. Besedovsky, A. del Rey, I. Klusman, H. Furukawa, G. Monge-Arditi, and A. Kabiersch, Cytokines as modulators of the hypothalamus-pituitary-adrenal axis, Molec. Biol. 40:613 (1991).Google Scholar
  62. 62.
    J.C. Mathison, R.D. Schreiber, A.C. La Forest, and R J. Ulevitch, Suppression of ACTH-induced steroidogenesis by supernatant from LPS-treated peritoneal exudate macropahges, J. Immunol. 130:2757 (1983).PubMedGoogle Scholar
  63. 63.
    H.O. Besedovsky, A. del Rey, E. Sorkin, R. Burri, C.G. Honegger, M. Schlumpf and W. Lichtensteiger, T lymphocytes affect the development of sympathetic innervation of mouse spleen, Brain Behav. Immun. 1:185 (1987).PubMedCrossRefGoogle Scholar
  64. 64.
    D. Lindholm, R. Heumann, M. Meyer, and H. Thoenen, Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve, Nature 330:658 (1987).PubMedCrossRefGoogle Scholar
  65. 65.
    H.O. Besedovsky and E. Sorkin, Immune neuroendocrine netowrk, Clin. Exp. Immunol. 27:1 (1977).PubMedGoogle Scholar
  66. 66.
    H.O. Besedovsky, A. del Rey, and E. Sorkin, Antigenic competition between horse and sheep red blood cells as a hormone-dependent phenomenon, Clin. Exp. Immunol. 37:106 (1979).PubMedGoogle Scholar
  67. 67.
    L.M. Bradley and R.I. Mishell, Selective protection of murine thymic helper T cells from glucocorticoid inhibition by macrophage-derived mediators, Cell. Immunol. 73:115 (1982).PubMedCrossRefGoogle Scholar
  68. 68.
    S.S. Fairchild, K. Shannon, E. Kwan, and R.I. Mishell, T cell-derived glucosteroid response- modifying factor (GRMFr): a unique lymphokine made by normal T lymphocytes and a T cell hybridoma, J. Immunol. 132:821 (1984).PubMedGoogle Scholar
  69. 69.
    S. Tokuda, L.C. Trujillo, R.A. Nofchissey, Hormonal regulation of the immune response, in: “Stress, Immunity and Aging,” E.L. Cooper, ed., Marcel Dekker Inc., New York (1984).Google Scholar
  70. 70.
    E.M. Sternberg, J.M. Hill, G.P. Chrousos, T. Kamilaris, S.J. Listwak, P.W. Gold and R.L. Wilder, Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats, Proc. Natl. Acad. Sci. USA 86:2374 (1989).PubMedCrossRefGoogle Scholar
  71. 71.
    G. Neek, K. Federlin, V. Graef, D. Rusch, and K.L. Schmidt, Adrenal secretion of Cortisol in patients with rheumatoid arthritis, J. Rheumatol. 17:24 (1990).Google Scholar
  72. 72.
    K. Schauenstein, R. Faessler, H. Dietrich, S. Schwarz, G. Kroemer, and G. Wick, Disturbed immune-endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis, J. Immunol. 139:1830 (1987).PubMedGoogle Scholar
  73. 73.
    S. Levine, R. Sowinski, and B. Steinetz, Effects of experimental allergic encephalomyelitis on thymus and adrenal: relation to remission and relapse, Proc. Soc. Exp. Biol. Med. 165:218 (1980).PubMedGoogle Scholar
  74. 74.
    I.A.M. MacPhee, FA. Antoni, and W.D. Mason, Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system to endogenous adrenal corticosteroids, J. Exp. Med. 169:431 (1989).PubMedCrossRefGoogle Scholar
  75. 75.
    B. Beutler, I.W. Milsark, and A.C. Cerami, Cachectin tumor necrosis factor: production, distribution and metabolic rate in vivo, J. Immunol. 135:3972 (1985).PubMedGoogle Scholar
  76. 76.
    A. del Rey and H.O. Besedovsky, Interleukin-1 affects glucose homeostasis, Am. J. Physiol. 253:R794 (1987).Google Scholar
  77. 77.
    S.K. Durum, J.J. Oppenheim, and R. Neta, Immunophysiologic role of interleukin 1, in: “Immunophysiology: the Role of Cells and Cytokines in Immunity and Inflammation,” J.J. Oppenheim, E.M. Shevach, eds., Oxford University Press Inc., New York (1990).Google Scholar
  78. 78.
    E.A. Flores, B.R. Bistrian, J.J. Pomposelli, C.A. Dinarello, G.L. Blackburn, and N.W. Istfan, Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1, J. Clin. Invest 83:1614 (1989).PubMedCrossRefGoogle Scholar
  79. 79.
    N.J. Rothwell, CRF is involved in the pyrogenic and thermogenic effects of interleukin lb in the rat, Am. J. Physiol. 256:E111 (1989).Google Scholar
  80. 80.
    H.O. Besedovsky and A. del Rey, Interleukin-1 and glucose homeostasis: an example of the biological relevance of immune-neuroendocrine interactions, Horm. Res. 31:94 (1989).PubMedCrossRefGoogle Scholar
  81. 81.
    A. del Rey and H.O. Besedovsky, Antidiabetic effects of interleukin-1, Proc. Natl. Acad. Sci. USA 86:5943 (1989).PubMedCrossRefGoogle Scholar
  82. 82.
    M.R. Hill, R.D. Stith, and R.E. McCallum, Human recombinant IL-1 alters glucocorticoid receptor function in Reuber hepatoma cells, J. Immunol. 141:1522 (1988).PubMedGoogle Scholar
  83. 83.
    J.P. Filkins, Endotoxin-enhanced secretion of macrophage insulin-like activity, J. Reticuloendothel Soc. 27:507 (1980).PubMedGoogle Scholar
  84. 84.
    A. Garcia-Welsh, J.S. Schneiderman, and D.L. Baly, Interleukin-1 stimulates glucose transport in the rat adipose cells. Evidence for receptor discrimination between IL-1 beta and alpha, FEBS Lett. 269:421 (1990).PubMedCrossRefGoogle Scholar
  85. 85.
    E.A. Flores, N. Istfan, J.J. Pomposelli, G.L. Blackburn, and B.R. Bistria, Effect of interleukin-1 and tumor necrosis factor/cachectin on glucose turnover in the rat, Metabolism 39:738 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Hugo O. Besedovsky
    • 1
  • Adriana del Rey
    • 1
  1. 1.Department of Physiology, Fachbereich HumanmedizinPhilipps-Universitat MarburgMarburgGermany

Personalised recommendations