Skip to main content

Markovian Analysis of EEG Signal Dynamics in Obsessive-Compulsive Disorder

  • Chapter
Advances in Processing and Pattern Analysis of Biological Signals

Abstract

Electroencephalograph (EEG) signal dynamics of recordings taken during an unstructured “eyes closed” recording session from 13 patients with severe obsessive-compulsive disorder (OCD) and eleven normal control subjects were investigated using Markov modelling of an autoregressive representation of the EEG signal. Limited state transition dynamics were observed in the EEG of all subjects with OCD but in none of the controls. These findings are discussed in relation to hypothesized disturbances in mental state transitions in OCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., 1969, Fitting autoregressive models for prediction, -Annals Inst. of Statistical Mathematics 21: 243–247.

    Article  MathSciNet  MATH  Google Scholar 

  • Badalamenti, A. F., Langs, R. J. and Kessler. M., 1992, Stochastic progression of new states in psychotherapy, Statistics’ in Med. 11: 231–242.

    Article  Google Scholar 

  • Baum, L. E. and Petrie, T., 1966, Statistical inference for probabilistic functions of finite state Markov chains, Annals of Mathematical Statistics 37: 1554–1563.

    Article  MathSciNet  MATH  Google Scholar 

  • Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W., 1975, Discrete Multivariate Analysis: Theory and Practice. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Bodenstein, G. and Praetorius, H. M., 1977, Feature extraction from the electroencephalogram by adaptive segmentation, Proc. IEEE 65: 642–652.

    Article  Google Scholar 

  • Bodenstein, G., Schneider, W. and Malsburg, C. V. D., 1985, Computerised EEG pattern classification and probability-density-function classification. Description of the method. Computers in Biol. & Med. 15: 297–313.

    Article  Google Scholar 

  • Bohlin, T., 1971, Analysis of EEG signals with changing spectra, IBM Systems Development Division, IBM Nordic Laboratory. Sweden, Technical Paper 18. 212.

    Google Scholar 

  • Bohlin, T., 1977, Analysis of EEG signals with changing spectra using a short-word Kalman estimator. Mathematical Biosciences 35: 221–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Bourlard, H. and Wellekens, C. J., 1990, Links between Markov models and multilayer perceptrons, IEEE Trans. in PAMI 12:1167–1178.

    Article  Google Scholar 

  • Carr, V., 1983, The concept of clinical state in psychiatry: a review, Comprehensive Psychiatric 24: 370–391.

    Article  Google Scholar 

  • Cerutti, S., Liberati, D., Avanzini, G., Francesetti, S., and Panzica, F., 1986, Classification of the EEG during neurosurgery. Parametric identification and Kalman filtering compared, J. Thorned. Eng. 8: 244–254.

    Google Scholar 

  • Crowell, D. H., Jones, R. H., Kapuniai, L. E. and Leung, P., 1977, Autoregressive representation of infant EEG for the purpose of hypothesis testing and classification, EEG and Clin. Neurophys. 43: 317–324.

    Article  Google Scholar 

  • Dunn, G. and Skuse, D., 1981, The natural history of depression in general practice: stochastic models, Psychological Medicine 11: 755–764.

    Article  Google Scholar 

  • Epstein, A. W. and Bailine, S. H., 1971, Sleep and dream studies in obsessional neurosis with particular reference to epileptic states, Biological Psychiatry 4: 149.

    Google Scholar 

  • Fenwick, P. B. C., Mitchie, P., Dollimore, J. and Fenton, G. W., 1969, Application of the autoregressive model to EEG analysis, Aggressologie 10: 533–564.

    Google Scholar 

  • Flor-Henry, P., Yeudall, L. T., Koles, Z. J. and Howarth, B. G., 1979, Neuropsychological and power spectral EEG investigations of the obsessive-compulsive syndrome. Biological Psychiatry 14: 119–130.

    Google Scholar 

  • Forney, Jr.. G. D., 1973. The Viterbi algorithm, Proc. IEEE 61: 268–278.

    Article  MathSciNet  Google Scholar 

  • Gath, I., Lehmann, D. and Bar-On, E., 1983, Fuzzy clustering of EEG signal and vigilance performance, Int. J. Neurosci. 20:303–312.

    Article  Google Scholar 

  • Gersch, W., 1970, Spectral analysis of EEG’s by autoregressive decomposition, Mathematical Biosciences 7: 205–222.

    Article  MATH  Google Scholar 

  • Giannitrapani, D., 1985, The Electrophysiology of Intellectual Function. Basel: Karger.

    Google Scholar 

  • Horowitz, M. J., 1979, States of Mind. NY: Plenum Publishing.

    Book  Google Scholar 

  • Insell, T. R., Donnelly, E. F., Lalakea, M. L., Alterman, I. S. and Homan, S., 1983, Neurological and neuropsychological studies of patients with obsessive-compulsive disorder, Biological Psychiatry 18: 741–751.

    Google Scholar 

  • Isaksson, A., Wennberg, A. and Zetterberg, L. H., 1981, Computer analysis of EEG signals with parameteric models, Proc. IEEE 69: 451–461.

    Article  Google Scholar 

  • Jansen, B. H.. Hasman. A. and Lenten, R., 1981, Piecewise analysis of EEGs using AR-modelling and clustering, Comput. Biomed. Res. 14: 168–178.

    Article  Google Scholar 

  • Jenike, M. A. and Brotman, A. W., 1984, The EEG in obsessive-compulsive disorder, J. Clin. Psych. 45: 122–124.

    Google Scholar 

  • Jensen. B. H. and Cheng. W. K., 1988, Structural EEG analysis: an explorative study, lot. J. Biomed. Comput. 23: 221–237.

    Article  Google Scholar 

  • Juang, B. H. and Rabincr, L. R.. 1990, The segmental K-means algorithm for estimating parameters of hidden Markov models, IEEE Trans. in ASSP 38:1639–1641.

    Article  Google Scholar 

  • Kydd, R. R. and Wright, J. J., 1986, Mental phenomena viewed as changes of state in a finite-state machine. Australian and New Zealand J of Psychiatry 20: 158–165.

    Article  Google Scholar 

  • Lopes da Silva. F. H.. Dijk, A. and Smits, H., 1974, Detection of nonstationaritics in EEGs using the autoregression model–An application to the EEGs of epileptics. In: CEAN–Computerised EEG Analysis (Dolce. G. and Kunkel, H., eds), Stuttgart: Gustav Fischer Verlag, pp. 180–199.

    Google Scholar 

  • Malloy. R. Rassmussen. S.. Braden, W., and Haier. R. J., 1989. Topographic evoked potential mapping in obsessive-compulsive disorder: evidence of frontal lobe dysfunction, Psychiatry Res. 28: 63–71.

    Article  Google Scholar 

  • Marshall. A. W. and Goldhamer, H.. 1955. An application of Markov processes to the study of the epidemiology of mental disease. Am Statistical Assoc. J. March: 99–129.

    Google Scholar 

  • Meyne. S. P. and Tweedie, R. L., 1993. Markov Chains and Stochastic Stability. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Mucciardi, A. N. and Gose. E. E., 1972. An automatic clustering algorithm and its applications to high-dimensional spaces, IEEE Trans. on SMC 2: 247–254.

    Article  Google Scholar 

  • Pacella, B. L., Potatin, P. and Nagler, S. H., 1944, Clinical and EEG studies in obsessive-compulsive states, Am. J. Psych. 100: 830–838.

    Google Scholar 

  • Perros. P., Young, E. S., Ritson, J. J., Price, G. W. and Mann, P., 1992, Power spectral EEG analysis and EEG variability in obsessive-compulsive disorder, Brain Topography 4: 187–192.

    Article  Google Scholar 

  • Plewis, I., 1985, Analysing Change: Measurement and Explanation Using Longitudinal Data. Chichester: Wiley.

    Google Scholar 

  • Remond, A. and Renault, B., 1972, La theorie des objects electrographiques, Rev EEG Neurophysiol. 3: 241–256.

    Google Scholar 

  • Rabiner, L. R. and Juang, B. H.. 1986, An introduction to hidden Markov models, IEEE ASSP Mag. 3 (1): 4–16.

    Article  Google Scholar 

  • Rockwell, F. V. and Simmons, D. J., 1947, The electroencephalogram and personality organization in the obsessive-compulsive reactions, Arch. Neur. and Psych. 57: 71–80.

    Article  Google Scholar 

  • Sergejew, A. A. and Tsoi, A. C., 1992, How many electrodes are enough? Insights from the application of the zero-delay frequency wavenumber spectral analysis of EEG and AEP. Pan Pacific Workshop on Brain Electric and Magnetic Topography. Melbourne, Australia, February 17–18 1992; Brain Topography 5: 65 (abstract).

    Google Scholar 

  • Shagass, C., Shagass, C., Roemer, R. A., Straumanis, J. J., and Josiassen, R. C., 1984. Psychiatric diagnostic discriminations with combinations of quantitative EEG variables, Br. J. Psych. 144: 581–592.

    Article  Google Scholar 

  • Torello. M. W.. 1989, Topographic mapping of EEG and evoked potentials in psychiatry: Delusions, illusions and realities. Brain Topography 1: 157–174.

    Article  Google Scholar 

  • Tsoi, A. C.. 1987, A new method for analysing electroencephalogram (EEG) signals. Proc. of the Int. Symposium on Signal Processing and its Applications, Brisbane, Australia, August 1987. 2: 803–807.

    Google Scholar 

  • Tsoi, A. C.. 1988. Parametrisation of electroencephalogram signals, a possible methodology. Proc. of the IFAC Svmp. on Identification and System Parameter Estimation, Beijing, China. August 27–31 1988, 3: 1369–1376.

    Google Scholar 

  • Tsoi, A. C. and Sergejew. A. A., 1992, An application of artificial neural netw ork technique in EEG signal analysis: Evidence of global disconnection in schizophrenia. Pan Pacific Workshop on Brain Electric and Magnetic Topography, Melbourne, Australia, February 17–18 1992; Brain Topography, 5: 65.

    Google Scholar 

  • Tuckwell, H. C., 1989, Stochastic Processes in the Neurosciences. Philadelphia: SIAM.

    Book  Google Scholar 

  • Wright, J. J., 1990, Reticular activation and the dynamics of neuronal networks, Biological Cybernetics 62: 289–298.

    Article  MATH  Google Scholar 

  • Wright, J. J. and Kydd, R. R., 1986, Schizophrenia as a disorder of cerebral state transitions, Australian and New Zealand J. of Psych. 20: 167–178.

    Article  Google Scholar 

  • Wright, J. J., Kydd, R. R. and Lees, G. J., 1985, State-changes in the brain viewed as linear steady-states and non-linear transitions between steady-states, Biological Cybernetics 53: 11–17.

    Article  MATH  Google Scholar 

  • Wright, J. J., Kydd, R. R. and Sergejew, A. A., 1990, Autoregression models of LEG: results compared with expectations for a multilinear near-equilibrium biophysical process, Biological Cybernetics 62: 201–210.

    Article  MATH  Google Scholar 

  • Wright, J. J. and Sergejew. A. A., 1991. Radial coherence. wave velocity and damping of electrocortical waves. EEG and Clin. Neurophys. 79: 403–412.

    Article  Google Scholar 

  • Wright, J. J.. Sergejew, A. A. and Liley, D. T. L., 1994. Computer simulation of electrocortical activity at millimetric scale, EEG and Clin. Neurophys. 90: 365–375.

    Article  Google Scholar 

  • Wright, J. J., Sergejew, A. A. and Stampfer, H. J., 1990, Inverse filter computation of the neural impulse giving rise to the auditory evoked potential. Brain Topography 2: 293–302.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sergejew, A.A., Tsoi, A.C. (1996). Markovian Analysis of EEG Signal Dynamics in Obsessive-Compulsive Disorder. In: Gath, I., Inbar, G.F. (eds) Advances in Processing and Pattern Analysis of Biological Signals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9098-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9098-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9100-6

  • Online ISBN: 978-1-4757-9098-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics