Source Characteristics from Inverse Modeling of EMG Signals

  • Herman B. K. Boom
  • Willemien Wallinga


If one tries to solve the inverse problem in single fiber electromyography (SFEMG), the question is which signal to consider as the proper source signal. Often the intracellular action potential (IAP) is taken as such. Measuring shape parameters and distances of Single Fiber Action Potentials and active fibers in muscle and comparing them with muscle structure model predictions reveals that it is transmembrane current which is the true source of the SFEMG.


Inverse Modeling Membrane Current Volume Conduction Skeletal Muscle Tissue Source Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, B. A., Put, J. H. M., Wallinga, W., and Wirtz. P., 1989, Quantitative analysis of single muscle fibre action potentials recorded at known distances, Electroencephalogr. Clin. Neurophysiol. 73: 245–253.CrossRefGoogle Scholar
  2. Albers, B. A., Rutten, W. L. C.. Wallinga, W., and Boom, H. B. K., 1988, Microscopic and macroscopic volume conduction in skeletal muscle tissue, applied to simulation of single-fiber action potentials. Med. & Biol. Eng. & Comp. 26: 605–610.Google Scholar
  3. Albers. B. A., Rutten, W. L. C., Wallinga, W., and Boom, H. B. K., 1986, A model Study on the influence of structure and membrane capacitance on volume conduction in skeletal muscle tissue, IEEE Trans. Biomed. Eng. 33: 681–689.CrossRefGoogle Scholar
  4. Almers, W., Stanfield, P. R., Stühmer, W., 1983, Lateral distribution of sodium and potassium channels in frog skeletal: measurements with a patch clamp technique, J. Physiol. 336: 261–284.Google Scholar
  5. Clark, J. W. Jr., Greco, E. C., Harman, T. L., 1978, Experience with a Fourier method for determining the extracellular potential fields of excitable cells with cylindrical geometry, CRC Crit. Rev. in Bioeng. 3: 1–22.Google Scholar
  6. Clark, J., and Plonsey, R., 1966, A mathematical Evaluation of the Core Conductor Model, Biophys. J. 6: 95.CrossRefGoogle Scholar
  7. Fedida, D., Sethi, S., Mulder, B. J. M., and Ter Keurs, H. E. D. J., 1990, An ultracompliant glass microelectrode for intracellular recording, Am. J. Physiol. 258(Cell Physiol. 27): C164 - C170.Google Scholar
  8. Ganapathy, N., Clark, J. W. Jr., and Wilson, O. B., 1987, Extracellular potentials from skeletal muscle, Math. Biosc. 83: 61–96.zbMATHCrossRefGoogle Scholar
  9. Gath, I., and Stâlberg, E., 1978, The calculated radial decline of the extracellular action potential compared with in situ measurements in the human biceps, Electroencephalogr. Clin. Neurophysiol. 44: 547–552.CrossRefGoogle Scholar
  10. Gath, L, and Stâlberg, E., 1979, Measurement of the uptake area of small size electromyographic electrodes, IEEE Trans Biomed. Eng. 26: 374–376.CrossRefGoogle Scholar
  11. Gerald, C. F., Wheatley, P. O., 1989, Applied Numerical Analysis, 4th ed., Adison-Wesley Pub. Co., Reading, Ma.zbMATHGoogle Scholar
  12. Gielen, F. L. H., Wallinga, W., Boon, K. L., 1984, Electrical conductivity of skeletal muscle tissue: experimental results from different muscles in vivo, Med. & Biol. Eng & Comput. 22: 569–577.CrossRefGoogle Scholar
  13. Gielen, F. L.. Cruts, H. E. P., Albers, B. A., Boon, K. L., Wallinga, W., and Boom, H. B. K., 1986, Model of the electrical conductivity of skeletal muscle based on tissue structure, Med. & Biol. Eng & Comput. 24: 34–40.CrossRefGoogle Scholar
  14. Hamill O. P., Marty, A.. Neher, E., Sakmann, B., and Sieworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.Google Scholar
  15. Hennens, H. J., van Bruggen, T. A. M.. Baten, C. T. M., Rutten, W. L. C., and Boom, H. B. K., 1992, The median frequency of the surface EMG power spectrum in relation to motor unit firing and action potential properties, J Electromyography Kin. 2: 15–25.Google Scholar
  16. Lorente de Nó, R.. 1947. Analysis of the distribution of action currents of nerve fiber in volume conductors, Stud. Rockefeller Inst. Med. Res. 132: 384.Google Scholar
  17. Meier, J. H.. Rutten, W. M. L.. Zoutman, A. E., Boom, H. B. K., andBergveld, P., 1992, Simulation of multipolar fiber selective neural stimulation using intrafascicular electrodes, IEEE Trans. Biomed. Eng. 39: 122–134.CrossRefGoogle Scholar
  18. Milton, R. L., Lupa, M. T., and Caldwell, J. H., 1992, Fast and slow twitch muscle fibers differ in their distributions of Na channels near the endplate, Neurosci. Lett. 135: 41–44.CrossRefGoogle Scholar
  19. Plonsey, R., 1969, Bioelectric Phenomena. New York: McGraw-Hill.Google Scholar
  20. Plonsey, R., and Barr, R., 1982, The four-electrode resistivity technique as applied to cardiac muscle, IEEE Trans. Biomed. Eng. 29: 541–544.CrossRefGoogle Scholar
  21. Rosenfalck, P., 1969, Intra-and extracellular potential fields of active nerve and muscle fibers. A physico-mathematical analysis of different models, Akademisk Forlag, Copenhagen, Denmark.Google Scholar
  22. Roth, B. J., and Gielen, L. H., 1987, A comparison of two models for calculating the electrical potential in skeletal muscle, Ann. Biomed. Eng. 15: 591–602.CrossRefGoogle Scholar
  23. Stegeman, D. F., and Linssen, W. H. J. P., 1992, Muscle fiber action potential changes and surface EMG: a simulation study, J. Electromyography Kin. 2: 130–140.CrossRefGoogle Scholar
  24. Van Veen, B. K., Wolters, H., Wallinga, W., Rutten, W. L. C., and Boom, H. B. K., 1993, The bioelectrical source in computing single muscle fiber action potentials, Biophys. J 64: 1492–1498.CrossRefGoogle Scholar
  25. Van Veen, B. K., Rijkhoff, N. J. M., Rutten, W. L. C., Wallinga, W., and Boom, H. B. K., 1992, Potential distribution and single-fiber action potentials in a radially bounded muscle model, Med. & Biol. Eng & Comput. 30: 303–310.CrossRefGoogle Scholar
  26. Van Veen, B. K.. Mast. E., Busschers, R., Verloop, A. J., Wallinga, W., Rutten, W. L. C., Gerrits, P. O., and Boom, H. B. K., 1994, Single fibre action potentials in skeletal muscle related to recording distances, J. Electromyography Kinesioly, 4: 37–46.CrossRefGoogle Scholar
  27. Wallinga, W., Gielen, F. L. H., Wirtz, P., de Jong, P., and Broenink, J., 1985, The different intracellular action potentials of fast and slow muscle fibers, Electroencephalogr Clin. iVeurophi’siol. 60: 539–547.CrossRefGoogle Scholar
  28. Wallinga W., Albers, B. A., Put, J. M. H., Rutten, W. L. C., and Wirtz, P., 1988, Activity of single muscle fibtres recorded at known distances. In: Electrophvsiological Kinesiologv, Wallinga. W.. Boom, H. B. K., and de Vries, J. (eds.). Elsevier Science Publishers: Amsterdam, pp. 221–224.Google Scholar
  29. Wolters, H. W., Wallinga, W., and Ypey, D. L., 1991, Recording of membrane current and action potential on the same spot in mammalian skeletal muscle fibers. Pflueger.s Arch. 418: R152.Google Scholar
  30. Wolters, H., Wallinga, W., Ypey, D. L., and Boom, H. B. K., 1994, Ionic currents during action potentials in mammalian skeletal muscle fibers analyzed with loose patch clamp, Am. J. Phr.siol. (Cell Physiol. 36): C 1699-C 1706.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Herman B. K. Boom
    • 1
  • Willemien Wallinga
    • 1
  1. 1.Faculty of Electrical Engineering and Institute for Biomedical TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations