Skip to main content

Processing, Feature Extraction and Classification of Body Surface Potential Maps

  • Chapter
Advances in Processing and Pattern Analysis of Biological Signals

Abstract

Body surface potential mapping (BSPM) is an electrocardiographic technique significantly better than standard ECG, yet its technical complexity and high cost have limited its use. A simplifying approach is suggested where the electrodes, spread out over the whole thorax, do not measure the whole ECG signal but only detect the time instants when the potentials at each electrode location cross some given threshold level. An algorithm for reconstruction of the complete BSPM information from these level-crossings has been utilized, based on the Karhunen-Loeve (K-L) expansion method. Complete BSPM recordings of a training set from subjects produces the set of basis functions for the reconstruction procedure. The reconstructions from level-crossings of a set of subjects with similar pathologies produce average RMS reconstruction error of about 140 uV, and correlation between original and estimated BSPMs of around 0.91. The simplified approach to BSPM measurement makes it a possible replacement to clinical ECG; here features of BSPM sequences are defined, and tested for classification and easiness of display. Three dimensional luci of the centers of mass of the BSPMs have been found to be a feature easy for display and serve as a good classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Requicha, A. A., 1980, Zeros of entire functions: Theory and engineering applications, Proc. IEEE 68: 308–328.

    Article  Google Scholar 

  2. Levine. B. J., 1980, Distribution of Zeroes of Entire Functions, American Math. Soc., Providence, RI.

    Google Scholar 

  3. Logan, B. F., 1977, Information in the zero-crossings of bandpass signals, Bell Tech. J. 56: 487–510.

    MathSciNet  MATH  Google Scholar 

  4. Curtis, S. R., and Oppenheim, A. V., 1987, Reconstruction of multi-dimensional signals from zero-crossings, J. Opt. Soc. Am. 4, 221–231.

    Article  Google Scholar 

  5. Curtis, S. R., Oppenheim, A. V., and Lim, J. S., 1985, Signal reconstruction from Fourier transform sign information, IEEE Trans. ASSP 33: 543–657.

    Article  Google Scholar 

  6. Papoulis, A., 1975, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Tran. Circuits and Systems 22: 735–743.

    Article  MathSciNet  Google Scholar 

  7. Youla, D. C., and Webb, H., 1982, Image restoration by the method of convex projections. Part I. Theory, IEEE Tran. Med. Imaging MI-1: 81–94.

    Google Scholar 

  8. Green, L. S., Lux, R. L., Stilli, D., Haws, C. W., and Taccardi, B., 1987, Fine detail in body surface maps: accuracy of maps using limited lead array and spatial and temporal data representation, J. Electrocardiol.. 20: 21–26.

    Article  Google Scholar 

  9. Spach, M. S., Barr, R. C., Benson, W., Walston, A., Wonen, R. B., and Edwards, S., 1979, Body surface low-level potentials during ventricular repolarization with analysis of the ST segment: Variability in normal subjects, Circulation 59: 822–836.

    Article  Google Scholar 

  10. Uijen, G. J. H., Heringa, A., and Van Oosterom, A.. 1984, Data reduction of body surface potential maps by means of orthogonal expansion, IEEE Trans. Biomed. Eng. 31: 706–714.

    Article  Google Scholar 

  11. Kornreich, F., and Rautaharju, P.M., 1981, The missing waveform and diagnostic information in the standard 12-lead electrocardiogram, J. Electrocardiol. 14: 341–350.

    Article  Google Scholar 

  12. Taccardi, B., 1963, Distribution of heart potentials on the thoracic surface of normal human subjects. Cire. Res. 12: 341–352.

    Article  Google Scholar 

  13. Mirvis, D. M., 1985, Ability of standard E.C.G parameters to detect the body surface isopotential abnormalities of pacing induced myocardial ischemia in the dog, J. Electrocardiology 18: 77–85.

    Article  Google Scholar 

  14. DeAmbroggi, L., Bertoni, T., Rabbia, C., and Landolina, M., 1986, Body surface potential maps in old inferior myocardial infarction: assessment of diagnostic criteria, J. Electrocardiol. 19:225–234.

    Google Scholar 

  15. Osugi, J., Ohta, T., Toyama,.1., Takatsu, F., Nagaya, T., and Yamada, K., 1984, Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram, J. Electrocardiol. 17: 55–62.

    Google Scholar 

  16. Kubota, I., Ikeda, K., Ohyama, T., Yamaki, M., Kawashima, S., Igarashi, A.. Tsuiki, K., and Yasui, S.. 1985, Body surface distributions of ST segment changes after exercise in effort angina pectoris without myocardial infarction, Am. Heart J. 110: 949–955.

    Google Scholar 

  17. Simoons, M. L., and Block, P., 1981, Towards the optimal lead system and optimal criteria for exercise electrocardiography, Am. J. Cardiol. 47: 1366–1374.

    Article  Google Scholar 

  18. Spach, M. S., and Barr, R. C., 1971 Physiologic correlates and clinical application of isopotential surface maps, in (Hoffman,I., Hamby, R. I.. Glassman, E., editors) Vectorcardiography 2. North Holland Publishing: Amsterdam, pp. 131–141.

    Google Scholar 

  19. MacLeod, R., Johnson, C., Gardner, M., and Horacek, B. M., 1992, Localization of ischemia during coronary angioplasty using body surface potential mapping and an electrocardiographic inverse solution, Computers in Cardiology 92: 251–254.

    Article  Google Scholar 

  20. Rudy, Y., and Plonsey, R., 1980, A comparison of volume conductor and source geometry effects on body surface and epicardial potentials, Circ. Res. 46: 283–291.

    Article  Google Scholar 

  21. Pan huy, H., Gulrajani, R. M., Roberge, F. A., Nadeu, R. A., Mailloux, G. E., and Savard. P. S., 1981, A comparative evaluation of three different approaches for detecting body surface isopotential map abnormalities in patients with myocardial infarction, J. Electrocardiol. 14: 43–56.

    Article  Google Scholar 

  22. Lux, R. L., Evans, A. K., Burgess, M. J., Wyatt, R. F., and Abildskov. J. A., 1981, Redundancy reduction for improved display and analysis of body surface potential maps I. Spatial compression. Cire. Res. 49: 186–196.

    Google Scholar 

  23. Evans, A. K.. Lux, R. L., Burgess, M. J., Wyatt, R. F., and Abildskov,.1. A., 1981, Redundancy reduction for improved display and analysis of body surface potential maps II. Temporal compression, Circ. Res. 49: 197–203.

    Google Scholar 

  24. Lux, R. L., and Green, L. S., 1983. Surface potential mapping: a problem in statistical imaging of the heart, IEEE Frontiers of Eng. and Comput. in Health Care 83:37–40.

    Google Scholar 

  25. Montague, T. J., Smith, E. R., Johnstone, D. E., Spencer, C. A., Lalond, L. D.. Bcssoudo, R. M., Gardner, M. J., Anderson, R. M., and Horacek, B. M., 1984, Temporal evolution of body surface maps pattern following acute inferior myocardial infarction. J. Electrocardiol. 17: 319–328.

    Google Scholar 

  26. Tonooka, I., Kubota, I., Watanabe, Y., Tsuiki, K., and Yasui, S., 1983. Isointegral analysis of body surface maps for the assessment of location and size of myocardial infarction, Ani. J. Cardiol. 52: 1174–1180.

    Article  Google Scholar 

  27. Nikias, C. L., Raghuveer, M. R., Siegel, J. H., and Fabian, M.. 1986, The zero delay wavenumber spectrum estimation for the analysis of array ECG signals–an alternative to isopotential mapping, IEEE Trans. on Biomed. Eng. 33: 435–451.

    Article  Google Scholar 

  28. Liebman, J., Rudy, Y., Thomas, C., Ko, W., Plonsey, R., and Diaz, P. J., 1984, Body Surface Potential Mapping System Reference Manual, Department of Biomedical Eng., Case Western Reserve University Cleveland Ohio.

    Google Scholar 

  29. Kornreich, F., Holt, J., Rijlant, P., Barnard, A. C. L., Tiberghien, J., Kramer, J., and Snoeck, J., 1976, New ECG techniques in the diagnosis of infarction and hypertrophy, in (Hoffman. I., and Hamby R. I., editros) Vectorcardiography 3rd. ed., Elsevier North Holland: Amsterdam p. 171.

    Google Scholar 

  30. Lux, R. L., Smith, C. R., Wyatt, R. F., and Abildskov, J. A., 1978, Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans. Biomed. Eng. 25: 270–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adam, D.R. (1996). Processing, Feature Extraction and Classification of Body Surface Potential Maps. In: Gath, I., Inbar, G.F. (eds) Advances in Processing and Pattern Analysis of Biological Signals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9098-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9098-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9100-6

  • Online ISBN: 978-1-4757-9098-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics