Processing, Feature Extraction and Classification of Body Surface Potential Maps

  • Dan R. Adam


Body surface potential mapping (BSPM) is an electrocardiographic technique significantly better than standard ECG, yet its technical complexity and high cost have limited its use. A simplifying approach is suggested where the electrodes, spread out over the whole thorax, do not measure the whole ECG signal but only detect the time instants when the potentials at each electrode location cross some given threshold level. An algorithm for reconstruction of the complete BSPM information from these level-crossings has been utilized, based on the Karhunen-Loeve (K-L) expansion method. Complete BSPM recordings of a training set from subjects produces the set of basis functions for the reconstruction procedure. The reconstructions from level-crossings of a set of subjects with similar pathologies produce average RMS reconstruction error of about 140 uV, and correlation between original and estimated BSPMs of around 0.91. The simplified approach to BSPM measurement makes it a possible replacement to clinical ECG; here features of BSPM sequences are defined, and tested for classification and easiness of display. Three dimensional luci of the centers of mass of the BSPMs have been found to be a feature easy for display and serve as a good classifier.


Fiducial Point Level Crossing Inferior Myocardial Infarction Data Compression Technique BioMedical Engineer Department 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Requicha, A. A., 1980, Zeros of entire functions: Theory and engineering applications, Proc. IEEE 68: 308–328.CrossRefGoogle Scholar
  2. 2.
    Levine. B. J., 1980, Distribution of Zeroes of Entire Functions, American Math. Soc., Providence, RI.Google Scholar
  3. 3.
    Logan, B. F., 1977, Information in the zero-crossings of bandpass signals, Bell Tech. J. 56: 487–510.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Curtis, S. R., and Oppenheim, A. V., 1987, Reconstruction of multi-dimensional signals from zero-crossings, J. Opt. Soc. Am. 4, 221–231.CrossRefGoogle Scholar
  5. 5.
    Curtis, S. R., Oppenheim, A. V., and Lim, J. S., 1985, Signal reconstruction from Fourier transform sign information, IEEE Trans. ASSP 33: 543–657.CrossRefGoogle Scholar
  6. 6.
    Papoulis, A., 1975, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Tran. Circuits and Systems 22: 735–743.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Youla, D. C., and Webb, H., 1982, Image restoration by the method of convex projections. Part I. Theory, IEEE Tran. Med. Imaging MI-1: 81–94.Google Scholar
  8. 8.
    Green, L. S., Lux, R. L., Stilli, D., Haws, C. W., and Taccardi, B., 1987, Fine detail in body surface maps: accuracy of maps using limited lead array and spatial and temporal data representation, J. Electrocardiol.. 20: 21–26.CrossRefGoogle Scholar
  9. 9.
    Spach, M. S., Barr, R. C., Benson, W., Walston, A., Wonen, R. B., and Edwards, S., 1979, Body surface low-level potentials during ventricular repolarization with analysis of the ST segment: Variability in normal subjects, Circulation 59: 822–836.CrossRefGoogle Scholar
  10. 10.
    Uijen, G. J. H., Heringa, A., and Van Oosterom, A.. 1984, Data reduction of body surface potential maps by means of orthogonal expansion, IEEE Trans. Biomed. Eng. 31: 706–714.CrossRefGoogle Scholar
  11. 11.
    Kornreich, F., and Rautaharju, P.M., 1981, The missing waveform and diagnostic information in the standard 12-lead electrocardiogram, J. Electrocardiol. 14: 341–350.CrossRefGoogle Scholar
  12. 12.
    Taccardi, B., 1963, Distribution of heart potentials on the thoracic surface of normal human subjects. Cire. Res. 12: 341–352.CrossRefGoogle Scholar
  13. 13.
    Mirvis, D. M., 1985, Ability of standard E.C.G parameters to detect the body surface isopotential abnormalities of pacing induced myocardial ischemia in the dog, J. Electrocardiology 18: 77–85.CrossRefGoogle Scholar
  14. 14.
    DeAmbroggi, L., Bertoni, T., Rabbia, C., and Landolina, M., 1986, Body surface potential maps in old inferior myocardial infarction: assessment of diagnostic criteria, J. Electrocardiol. 19:225–234.Google Scholar
  15. 15.
    Osugi, J., Ohta, T., Toyama,.1., Takatsu, F., Nagaya, T., and Yamada, K., 1984, Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram, J. Electrocardiol. 17: 55–62.Google Scholar
  16. 16.
    Kubota, I., Ikeda, K., Ohyama, T., Yamaki, M., Kawashima, S., Igarashi, A.. Tsuiki, K., and Yasui, S.. 1985, Body surface distributions of ST segment changes after exercise in effort angina pectoris without myocardial infarction, Am. Heart J. 110: 949–955.Google Scholar
  17. 17.
    Simoons, M. L., and Block, P., 1981, Towards the optimal lead system and optimal criteria for exercise electrocardiography, Am. J. Cardiol. 47: 1366–1374.CrossRefGoogle Scholar
  18. 18.
    Spach, M. S., and Barr, R. C., 1971 Physiologic correlates and clinical application of isopotential surface maps, in (Hoffman,I., Hamby, R. I.. Glassman, E., editors) Vectorcardiography 2. North Holland Publishing: Amsterdam, pp. 131–141.Google Scholar
  19. 19.
    MacLeod, R., Johnson, C., Gardner, M., and Horacek, B. M., 1992, Localization of ischemia during coronary angioplasty using body surface potential mapping and an electrocardiographic inverse solution, Computers in Cardiology 92: 251–254.CrossRefGoogle Scholar
  20. 20.
    Rudy, Y., and Plonsey, R., 1980, A comparison of volume conductor and source geometry effects on body surface and epicardial potentials, Circ. Res. 46: 283–291.CrossRefGoogle Scholar
  21. 21.
    Pan huy, H., Gulrajani, R. M., Roberge, F. A., Nadeu, R. A., Mailloux, G. E., and Savard. P. S., 1981, A comparative evaluation of three different approaches for detecting body surface isopotential map abnormalities in patients with myocardial infarction, J. Electrocardiol. 14: 43–56.CrossRefGoogle Scholar
  22. 22.
    Lux, R. L., Evans, A. K., Burgess, M. J., Wyatt, R. F., and Abildskov. J. A., 1981, Redundancy reduction for improved display and analysis of body surface potential maps I. Spatial compression. Cire. Res. 49: 186–196.Google Scholar
  23. 23.
    Evans, A. K.. Lux, R. L., Burgess, M. J., Wyatt, R. F., and Abildskov,.1. A., 1981, Redundancy reduction for improved display and analysis of body surface potential maps II. Temporal compression, Circ. Res. 49: 197–203.Google Scholar
  24. Lux, R. L., and Green, L. S., 1983. Surface potential mapping: a problem in statistical imaging of the heart, IEEE Frontiers of Eng. and Comput. in Health Care 83:37–40.Google Scholar
  25. 25.
    Montague, T. J., Smith, E. R., Johnstone, D. E., Spencer, C. A., Lalond, L. D.. Bcssoudo, R. M., Gardner, M. J., Anderson, R. M., and Horacek, B. M., 1984, Temporal evolution of body surface maps pattern following acute inferior myocardial infarction. J. Electrocardiol. 17: 319–328.Google Scholar
  26. 26.
    Tonooka, I., Kubota, I., Watanabe, Y., Tsuiki, K., and Yasui, S., 1983. Isointegral analysis of body surface maps for the assessment of location and size of myocardial infarction, Ani. J. Cardiol. 52: 1174–1180.CrossRefGoogle Scholar
  27. 27.
    Nikias, C. L., Raghuveer, M. R., Siegel, J. H., and Fabian, M.. 1986, The zero delay wavenumber spectrum estimation for the analysis of array ECG signals–an alternative to isopotential mapping, IEEE Trans. on Biomed. Eng. 33: 435–451.CrossRefGoogle Scholar
  28. 28.
    Liebman, J., Rudy, Y., Thomas, C., Ko, W., Plonsey, R., and Diaz, P. J., 1984, Body Surface Potential Mapping System Reference Manual, Department of Biomedical Eng., Case Western Reserve University Cleveland Ohio.Google Scholar
  29. 29.
    Kornreich, F., Holt, J., Rijlant, P., Barnard, A. C. L., Tiberghien, J., Kramer, J., and Snoeck, J., 1976, New ECG techniques in the diagnosis of infarction and hypertrophy, in (Hoffman. I., and Hamby R. I., editros) Vectorcardiography 3rd. ed., Elsevier North Holland: Amsterdam p. 171.Google Scholar
  30. 30.
    Lux, R. L., Smith, C. R., Wyatt, R. F., and Abildskov, J. A., 1978, Limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans. Biomed. Eng. 25: 270–276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Dan R. Adam
    • 1
  1. 1.The Cardiac Research CenterDepartment of Biomedical EngineeringTechnion, I.I.T., HaifaIsrael

Personalised recommendations