Signal Processing of EEG: Evidence for Chaos or Noise. An Application to Seizure Activity in Epilepsy

  • Fernando H. Lopes da Silva
  • Jan-Pieter Pijn
  • Demetrios N. Velis


The EEG is an important signal for the diagnosis of functional disturbances of the brain, and in particular, of epilepsy. The non-linear dynamical analysis of EEG signals recorded during seizure activity in comparison with on-going signals allowed us to formulate a hypothesis about the generation of epileptic activity. According to this model, epilepsy should be envisaged as a dynamical disease of neuronal networks, that may exhibit different types of attractors, i.e., may present bifurcations. One of these attractors is characterized by the generation of irregular oscillations, typical of epileptic seizures.


Lyapunov Exponent Neuronal Network Epileptic Seizure Correlation Dimension Seizure Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babloyantz, A., and Salazar, J. M., 1985, Evidence for chaotic dynamics of brain activity during the sleep cycle, Phys. Lett. 111A: 152–156.CrossRefGoogle Scholar
  2. Babloyantz, A., and Destexhe, A., 1986, Low-dimensional chaos in an instance of epilepsy, Proc. Nat. Acad. Sci. (U.S.A.) 83: 3513–3517.CrossRefGoogle Scholar
  3. Elbert, Th., Ray, W. J., Kowalik, Z., Skinner, J. F., Graf, K. E., and Birbaumer. N., 1994, Chaos and physiology: deterministic chaos in excitable cell assemblies, Plu siol. Rev 7:1–7.Google Scholar
  4. Farmer, J. D., Ott, E., and Yorke, J. A., 1983, The dimension of chaotic attractors. Phvsica 07: 153.MathSciNetGoogle Scholar
  5. Freeman, W. J., and Skarda. C. A., 1985, A perspective on brain theory: non-linear dynamics of neural masses, Brain Res. Rev. 10: 147–175.CrossRefGoogle Scholar
  6. Freeman, W. J., and Viana di Prisco, G., 1986, Relation of olfactory EEG to behavior: time series analysis, Behm: Neurosc. 100: 753–763CrossRefGoogle Scholar
  7. Goddard, G., 1967, Development of epileptic seizures through brain stimulation at low intensity, Nature 214: 1020–1021.CrossRefGoogle Scholar
  8. Grassbcrger, P., and Procaccia, I., 1983, Measuring the strangeness of strange attractors, Physica 9: 183–208.Google Scholar
  9. Iasemidis, L. D., Sackellares, J.. Zaveri, H., and Williams, W., 1990, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topography 2: 187–201.CrossRefGoogle Scholar
  10. Kaczmarek, L. K., and Babloyantz, A., 1977, Spatiotemporal patterns in epileptic seizures, Biol. Cvbern. 26: 199–208.zbMATHCrossRefGoogle Scholar
  11. Kamphuis, W., Lopes da Silva, F. H., and Wadman, W. J., 1988, Changes in local evoked potentials in the rat hippocampus (CA1) during kindling epileptogenesis, Brain Res. 440: 205–215.CrossRefGoogle Scholar
  12. Kamphuis, W., and Lopes da Silva, F. H., 1990, The kindling model of epilepsy: The role of GABAergic inhibition. Neurosci. Res. Comm. 6: 1–9.Google Scholar
  13. Kamphuis, W., Monyer, H., Dc Rijk, T., and Lopes da Silva, F. H., 1992, Hippocampal kindling increases the expression of glutamate receptor -A Flip and -B Flip mRNA in dendate granule cells. Neurosci. Lea. 148: 51–54.CrossRefGoogle Scholar
  14. Lopes da Silva. F. H., 1993, EEG analysis: Theory and practice. In: Niedermeyer, E., and Lopes da Silva, F. H. (eds.). Electroencephalography: Basic Principles, Clinical Applications and Related Fields, 3rd cd. Williams & Wilkins: Baltimore, pp. 1097–1123.Google Scholar
  15. Lothman. E. W, Bertram, E. H. III and Stringer, J. L.. 1991, Functional anatomy of hippocampal seizures. Progres.s in Neurobiology 37: 1–82.CrossRefGoogle Scholar
  16. McNamara, J. O., 1989, Development of new pharmacological agents for epilepsy: lessons from the kindling model. E’pilepsia 30: S13 - S18.CrossRefGoogle Scholar
  17. Pipi, J. P.. Van Neerven. J., Noest. A., and Lopes da Silva, F. H., 1991, Chaos or noise in EEG signals; dependence on state and brain site, Electroenceph. clin. Neurophysiol. 79: 371–381.CrossRefGoogle Scholar
  18. Racine, R. 1972, Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroenceph. clin. Neurophysrol. 32: 281–294.CrossRefGoogle Scholar
  19. Saermaak, K., Labech, J., Bak. C. K., and Sabers, A., 1990, Magnetoencephalography and attractor dimension: normal subjects and epileptic patients. In: Basar, E., and Bullock. H. (eds.), Brain Dynamics, Springer-Verlag: Berlin, pp. 149–158.Google Scholar
  20. Schuster, H. G., 1984, Deterministic Chaos. An Introduction. Physik, Weinheim, 270 pp.zbMATHGoogle Scholar
  21. Takens, F. Detecting strange attractors in turbulence. Dynamical systems and turbulence. In: Rand, D. A., and Youg, L. S. (eds.), Lecture Notes in Mathematics, Springer: New York, vol. 898, pp. 365–381.Google Scholar
  22. Theiler. J., 1986. Spurious dimension from correlation algorithms applied to limited time-series data, Phys. Rev. A 34: 2427–2432.CrossRefGoogle Scholar
  23. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D., 1992, Testing for nonlinearity in time series: the method of surrogate data, Physica 58D: 77–94.zbMATHGoogle Scholar
  24. Thompson, J. M. T., and Stewart, H. B., 1986. Non Linear Dynamics and Chaos, Wiley and Sons: Chichester, p. 376.Google Scholar
  25. Traub, R. D., and Wong, R. K. S., 1982, Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747.CrossRefGoogle Scholar
  26. Traub, R. D., and Miles, R.. 1991, Neuronal Networks of the Hippocampus, Cambridge University Press: Cambridge, pp. 281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Fernando H. Lopes da Silva
    • 1
    • 2
  • Jan-Pieter Pijn
    • 2
  • Demetrios N. Velis
    • 2
  1. 1.Institute of NeurobiologyUniversity of AmsterdamNetherlands
  2. 2.Institute of Epilepsy “Meer en Bosch”HeemstedeThe Netherlands

Personalised recommendations