New Catalysis and Process for Ethylene Polymerization

  • F. J. Karol
  • B. E. Wagner
  • I. J. Levine
  • G. L. Goeke
  • A. Noshay


Olefin polymerization catalysis continues to be a fertile area of research with worldwide participation in both industrial and academic laboratories.1–3 While much of this research has centered on methods to increase the productivity of catalysts, there has been and continues to be much active research on other features of olefin polymerization catalysis. The specific composition of the catalyst exerts an important effect on polymer molecular weight and molecular weight distribution (MWD), comonomer incorporation and copolymerization kinetics, and on the degree of stereoregularity. Moreover, the size, shape, and porosity (morphology) of the catalyst particle plays an important role in regulating the morphology of the resultant polymer. Development of low cost, reproducible processes for catalyst manufacture continues to be another important objective in catalyst research.4 The focus of industrial research in olefin polymerization catalysis centers on the chemistry and technology necessary to obtain simultaneously favorable catalyst responses in all of the areas described above.


Molecular Weight Distribution Polymer Particle Ethylene Polymerization Kinetic Profile Silica Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Quirk, Ed., Transition Metal Catalyzed Polymerizations, MMI Press Symposium Series, Vol. 4, Parts A and B (1983).Google Scholar
  2. 2.
    P. Pino and R. Mulhaupt, Angew. Chem., Int. Ed. Engl., 19, 857–875 (1980).CrossRefGoogle Scholar
  3. 3.
    F. J. Karol, Catal. Rev.-Sci. Eng., 26 (3 & 4), 557–595 (1984).Google Scholar
  4. 4.
    L. Bohm, Chem-Ing.-Tech., 56, No. 9, 674–684 (1984).CrossRefGoogle Scholar
  5. 5.
    J. N. Short, see ref. 1, Part B, 651–669 (1983).Google Scholar
  6. 6.
    J. P. Hogan, U. S. Patent 3,130, 188 (1964).Google Scholar
  7. 7.
    J. P. Hogan and D. R. Witt, U.S. Patent 3,622, 521 (1971).Google Scholar
  8. 8.
    M. P. McDaniel, M. B. Welch, and M. J. Dreiling, J. Catal., 82, 118126 (1983).Google Scholar
  9. 9.
    T. J. Pullukat, M. Shida, and R. E. Hoff, see ref. 1, Part B, 697–712 (1983).Google Scholar
  10. 10.
    H. L. Hsieh, Catal. Rev.-Sci. Eng., 26 (3 & 4), 631–651 (1984).Google Scholar
  11. 11.
    I. J. Levine and F. J. Karol, U.S. Patent 4,011, 382 (1977).Google Scholar
  12. 12.
    M. P. McDaniel and M. B. Welch, U.S. Patents 4,152,122 (1979), 4,177,162 (1979), 4,182,815 (1980),4,247,421 (1981), 4,277, 587 (1981).Google Scholar
  13. 13.
    W. Kirch and P. A. Thompson, U.S. Patents 4,184,979 (1980) and 4,224, 428 (1980).Google Scholar
  14. 14.
    J. P. Hogan, U.S. Patent 3,878, 179 (1975).Google Scholar
  15. 15.
    See ref. 3, 575–577.Google Scholar
  16. 16.
    F. J. Karol, G. L. Brown, and J. M. Davison, J. Polym. Sci., Polym. Chem. Ed., 11, No. 2, 413–424 (1973).CrossRefGoogle Scholar
  17. 17.
    F. J. Karol and C. Wu, J. Polym. Sci., Polym. Chem. Ed., 12, 1549–1558 (1974).CrossRefGoogle Scholar
  18. 18.
    L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, New York (1966).Google Scholar
  19. 19.
    B. E. Wagner, J. N. Helbert, E. H. Poindexter, and R. D. Bates, Jr., Surface Sci., 67, 251 (1977).CrossRefGoogle Scholar
  20. 20.
    F. J. Karol, G. L. Karapinka, C. Wu, A. W. Dow, R. N. Johnson and W. L. Carrick, J. Polym. Sci., Part A-1, 10, 2621–2637 (1972).CrossRefGoogle Scholar
  21. 21.
    A. Noshay and F. J. Karol, U.S. Patents 4,077,904 (1978) and 4,100, 337 (1978).Google Scholar
  22. 22.
    A. Noshay and F. J. Karol, Canadian Patent, 1, 087, 595 (1980).Google Scholar
  23. 23.
    G. L. Goeke, B. E. Wagner, and F. J. Karol, U.S. Patent 4,302, 565 (1981).Google Scholar
  24. 24.
    F. J. Karol, G. L. Goeke, B. E. Wagner, W. A. Fraser, R. J. Jorgensen, and N. Friis, U.S. Patent 4,302, 566 (1981).Google Scholar
  25. 25.
    U. Giannini, E. Albizatti, S. Parodi, and F. Pirinoli, U.S. Patents 4,124,532 (1978) and 4,174, 429 (1979).Google Scholar
  26. 26.
    A. Greco, G. Bertolini, and S. Cesca, J. Appl. Polym. Sci., 25, 20452061 (1980).Google Scholar
  27. 27.
    A. Noshay, F. J. Karol, and R. J. Jorgensen, U.S. Patent 4,482, 687 (1984).Google Scholar
  28. 28.
    G. L. Goeke, B. E. Wagner, and F. J. Karol, U.S. Patent 4,354, 009 (1982).Google Scholar
  29. 29.
    C. T. Elston, U.S. Patent 3,645, 992 (1972).Google Scholar
  30. 30.
    J. P. Hogan, B. E. Nasser, and R. T. Werkuran, Preprints of XXII International Congress on Pure and Applied Chemistry, Boston Vol. II, 703–710 (1971).Google Scholar
  31. 31.
    W. L. Carrick, R. J. Turbett, F. J. Karol, G. L. Karapinka, A. S. Fox, and R. N. Johnson, J. Polym. Sci., Polym. Chem. Ed., 10, 2609–2620 (1972).CrossRefGoogle Scholar
  32. 32.
    U. Zucchini and G. Cecchin, Adv. Polym. Sci., 5, 101–153 (1983).CrossRefGoogle Scholar
  33. 33.
    M. P. McDaniel, J. Polym. Sci., Polym. Chem. Ed., 19, 1967–1976 (1981).CrossRefGoogle Scholar
  34. 34.
    J. Boor, Jr., Ziegler-Natta Catalysts and Polymerizations, Academic, New York, Chap. 8 (1979).Google Scholar
  35. 35.
    M. G. Chiovetta, Heat and Mass Transfer During the Polymerization of Alpha-Olefins From the Gas Phase, University Microfilms International, B 1983, 44 (4), 1183, Ann Arbor, Michigan (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • F. J. Karol
    • 1
  • B. E. Wagner
    • 1
  • I. J. Levine
    • 1
  • G. L. Goeke
    • 1
  • A. Noshay
    • 1
  1. 1.Unipol Systems DepartmentUnion Carbide CorporationBound BrookUSA

Personalised recommendations