Advances in Polyolefins pp 337-354 | Cite as
New Catalysis and Process for Ethylene Polymerization
Abstract
Olefin polymerization catalysis continues to be a fertile area of research with worldwide participation in both industrial and academic laboratories.1–3 While much of this research has centered on methods to increase the productivity of catalysts, there has been and continues to be much active research on other features of olefin polymerization catalysis. The specific composition of the catalyst exerts an important effect on polymer molecular weight and molecular weight distribution (MWD), comonomer incorporation and copolymerization kinetics, and on the degree of stereoregularity. Moreover, the size, shape, and porosity (morphology) of the catalyst particle plays an important role in regulating the morphology of the resultant polymer. Development of low cost, reproducible processes for catalyst manufacture continues to be another important objective in catalyst research.4 The focus of industrial research in olefin polymerization catalysis centers on the chemistry and technology necessary to obtain simultaneously favorable catalyst responses in all of the areas described above.
Keywords
Molecular Weight Distribution Polymer Particle Ethylene Polymerization Kinetic Profile Silica SupportPreview
Unable to display preview. Download preview PDF.
References
- 1.R. D. Quirk, Ed., Transition Metal Catalyzed Polymerizations, MMI Press Symposium Series, Vol. 4, Parts A and B (1983).Google Scholar
- 2.P. Pino and R. Mulhaupt, Angew. Chem., Int. Ed. Engl., 19, 857–875 (1980).CrossRefGoogle Scholar
- 3.F. J. Karol, Catal. Rev.-Sci. Eng., 26 (3 & 4), 557–595 (1984).Google Scholar
- 4.L. Bohm, Chem-Ing.-Tech., 56, No. 9, 674–684 (1984).CrossRefGoogle Scholar
- 5.J. N. Short, see ref. 1, Part B, 651–669 (1983).Google Scholar
- 6.J. P. Hogan, U. S. Patent 3,130, 188 (1964).Google Scholar
- 7.J. P. Hogan and D. R. Witt, U.S. Patent 3,622, 521 (1971).Google Scholar
- 8.M. P. McDaniel, M. B. Welch, and M. J. Dreiling, J. Catal., 82, 118126 (1983).Google Scholar
- 9.T. J. Pullukat, M. Shida, and R. E. Hoff, see ref. 1, Part B, 697–712 (1983).Google Scholar
- 10.H. L. Hsieh, Catal. Rev.-Sci. Eng., 26 (3 & 4), 631–651 (1984).Google Scholar
- 11.I. J. Levine and F. J. Karol, U.S. Patent 4,011, 382 (1977).Google Scholar
- 12.M. P. McDaniel and M. B. Welch, U.S. Patents 4,152,122 (1979), 4,177,162 (1979), 4,182,815 (1980),4,247,421 (1981), 4,277, 587 (1981).Google Scholar
- 13.W. Kirch and P. A. Thompson, U.S. Patents 4,184,979 (1980) and 4,224, 428 (1980).Google Scholar
- 14.J. P. Hogan, U.S. Patent 3,878, 179 (1975).Google Scholar
- 15.See ref. 3, 575–577.Google Scholar
- 16.F. J. Karol, G. L. Brown, and J. M. Davison, J. Polym. Sci., Polym. Chem. Ed., 11, No. 2, 413–424 (1973).CrossRefGoogle Scholar
- 17.F. J. Karol and C. Wu, J. Polym. Sci., Polym. Chem. Ed., 12, 1549–1558 (1974).CrossRefGoogle Scholar
- 18.L. H. Little, Infrared Spectra of Adsorbed Species, Academic Press, New York (1966).Google Scholar
- 19.B. E. Wagner, J. N. Helbert, E. H. Poindexter, and R. D. Bates, Jr., Surface Sci., 67, 251 (1977).CrossRefGoogle Scholar
- 20.F. J. Karol, G. L. Karapinka, C. Wu, A. W. Dow, R. N. Johnson and W. L. Carrick, J. Polym. Sci., Part A-1, 10, 2621–2637 (1972).CrossRefGoogle Scholar
- 21.A. Noshay and F. J. Karol, U.S. Patents 4,077,904 (1978) and 4,100, 337 (1978).Google Scholar
- 22.A. Noshay and F. J. Karol, Canadian Patent, 1, 087, 595 (1980).Google Scholar
- 23.G. L. Goeke, B. E. Wagner, and F. J. Karol, U.S. Patent 4,302, 565 (1981).Google Scholar
- 24.F. J. Karol, G. L. Goeke, B. E. Wagner, W. A. Fraser, R. J. Jorgensen, and N. Friis, U.S. Patent 4,302, 566 (1981).Google Scholar
- 25.U. Giannini, E. Albizatti, S. Parodi, and F. Pirinoli, U.S. Patents 4,124,532 (1978) and 4,174, 429 (1979).Google Scholar
- 26.A. Greco, G. Bertolini, and S. Cesca, J. Appl. Polym. Sci., 25, 20452061 (1980).Google Scholar
- 27.A. Noshay, F. J. Karol, and R. J. Jorgensen, U.S. Patent 4,482, 687 (1984).Google Scholar
- 28.G. L. Goeke, B. E. Wagner, and F. J. Karol, U.S. Patent 4,354, 009 (1982).Google Scholar
- 29.C. T. Elston, U.S. Patent 3,645, 992 (1972).Google Scholar
- 30.J. P. Hogan, B. E. Nasser, and R. T. Werkuran, Preprints of XXII International Congress on Pure and Applied Chemistry, Boston Vol. II, 703–710 (1971).Google Scholar
- 31.W. L. Carrick, R. J. Turbett, F. J. Karol, G. L. Karapinka, A. S. Fox, and R. N. Johnson, J. Polym. Sci., Polym. Chem. Ed., 10, 2609–2620 (1972).CrossRefGoogle Scholar
- 32.U. Zucchini and G. Cecchin, Adv. Polym. Sci., 5, 101–153 (1983).CrossRefGoogle Scholar
- 33.M. P. McDaniel, J. Polym. Sci., Polym. Chem. Ed., 19, 1967–1976 (1981).CrossRefGoogle Scholar
- 34.J. Boor, Jr., Ziegler-Natta Catalysts and Polymerizations, Academic, New York, Chap. 8 (1979).Google Scholar
- 35.M. G. Chiovetta, Heat and Mass Transfer During the Polymerization of Alpha-Olefins From the Gas Phase, University Microfilms International, B 1983, 44 (4), 1183, Ann Arbor, Michigan (1983).Google Scholar