Polymerization of Olefins with Magnesium Chloride-Supported Catalysts

  • S. Sivaram
  • P. R. Srinivasan


Activated magnesium chloride has been established as an ideal support for titanium-based high efficiency olefin polymerization. One of the earliest disclosed methods was to comill anhydrous magnesium chloride and titanium tetrachloride for prolonged periods either alonel or in presence of an electron donor, such as ethyl benzoate (EB).2,3 A later variant involves comilling anhydrous MgCl2 with an electron donor (typically EB) followed by treatment with TiCl4 in the liquid phase.4 In some cases prior to reaction with TiCl4, the milled MgCl2.EB complex is also treated with a second electron donor and an organoaluminum compound.5,6


Crystallite Size Lewis Base Titanium Tetrachloride Ethyl Benzoate Silicon Tetrachloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ger. 2,153,520 to Montedison S.p.A, CA 77: 62505s (1972).Google Scholar
  2. 2.
    Ger. 2,347,577 to Montedison S.p.A, CA 83: 59870a (1972).Google Scholar
  3. 3.
    Ger. 2,638,429 to Montedison S.p.A, CA 86: 140706x (1975).Google Scholar
  4. 4.
    Belg. 848, 427 to Montedison S.p.A, CA 87:68893v (1977); Japan 79,118,484 to Mitsubishi Industries, CA 92: 59450z (1979).Google Scholar
  5. 5.
    Ger. 2,809,318 to Montedison S.p.A, CA 89: 216056h (1978).Google Scholar
  6. N. Kashiwa and J. Yoshitake, Makromol. Chem. 185, 1133 (1984).Google Scholar
  7. 7.
    U.S. 4,227,589 to Montedison S.p.A, CA 86:172169d (1981); Ger. 3,022,738 to Mitsui Petrochemical Ind., CA 94:122303n (1981); H. L. Hsieh, Catal. Rev. - Sci. Eng. 26, 631 (1984). ’Google Scholar
  8. P. Galli, L. Luciani, and G. Cecchin, Die Angew. Makromol. Chem. 94, 63 (1981).Google Scholar
  9. P. Galli, P. C. Barbe, G. Guidetti, R. Zanetti, A. Martorana, A. Marigo, M. Bergozza, and A. Fichera, Eur. Polym. J. 19, 19 (1983).Google Scholar
  10. C. Dumas and C. C. Hsu, J. Macromol. Sci. - Rev. Macromol. Chem. Phys. C-24, 355 (1984).Google Scholar
  11. U. Giannini, Makromol. Chem. Suppl. 5, 216 (1981).Google Scholar
  12. 12.
    N. Kashiwa, Polymer J. 12, 603 (1980).CrossRefGoogle Scholar
  13. P. Galli, P. C. Barbe, and L. Noristi, Die Angew. Makromol. Chem. 120, 73 (1984).Google Scholar
  14. 14.
    B. Keszler, G. Bodor and A. Simon, Polymer 21, 1037 (1980).Google Scholar
  15. 15.
    J. C. W. Chien, J-C. Wu, and C-I. Kuo, J. Polym. Sci. Polym. Chem. Ed., 21, 737 (1983); J. C. W. Chien, Catal. Rev. - Sci. Eng. 26, 613 (1984).Google Scholar
  16. S. A. Sergeev, G. D. Butakov, V. A. Zakharov, and E. M. Moroz, Makromol. Chem. 184, 2421 (1983).Google Scholar
  17. J. Boor, J. Polym. Sci. Pt A-1, 9, 617 (1971).Google Scholar
  18. F-J. Karol, Catal. Rev. - Sci. Eng. 26, 557 (1984).Google Scholar
  19. 19.
    S. Xiao, S. Cai, H. Lui, S. Zhang, and L. Zhou, Tsui Hua Hsuch Pao, Polymer 1 (4), 291 (1980).Google Scholar
  20. 20.
    J. C. W. Chien, J-C. Wu, C-I. Kuo, J. Polym. Sci., Polym. Chem. Ed. 20, 2019 (1982).Google Scholar
  21. 21.
    Japan 80–1510 10 to Mitsui Petrochemical Industries, CA 94: 122292h (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • S. Sivaram
    • 1
  • P. R. Srinivasan
    • 1
  1. 1.Research CentreIndian Petrochemicals Corporation LimitedBarodaIndia

Personalised recommendations