Low Bone Mass in Past and Present Aboriginal Populations

  • Susan K. Pfeiffer
  • Richard A. Lazenby
Part of the Advances in Nutritional Research book series (ANUR, volume 9)


A slight and gradual loss of bone mass is characteristic of all aging primates, if they live long enough (Garn, 1970; Burr, 1980). Nevertheless, the observation of reduced bone mass among ancestral human skeletal remains is limited to relatively recent populations. Since the domestication of plants roughly 12,000 years ago, skeletal remains from disparate parts of the world have occasionally shown low bone mass. Perhaps earlier populations did not suffer age-related bone loss because they died at young ages (Pfeiffer, 1990), or perhaps their diet or lifestyle facilitated effective bone maintenance. Past human populations were more dependent on local natural resources and their own physical labor for subsistence, a cultural pattern maintained by only a few geographically isolated aboriginal groups today. These “anthropological populations” have been portrayed as natural paradigms whose dietary habits might be studied as representations of our species’ natural “set point” for nutritional requirements, and against which we might evaluate modern regimens and their biological consequences (Eaton et al., 1988; Eaton and Nelson, 1991).


Bone Mass Cortical Bone Loss Skeletal Sample Local Natural Resource Prehistoric Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armelagos, G. J., Mielke, J. H., Owen, K. H., Van Gerven, D. P., Dewey, J. R., and Mahler, P. E., 1972, Bone growth and development in prehistoric populations from Sudanese Nubia, J. Hum. Evol. 1: 89.CrossRefGoogle Scholar
  2. Avioli, L. V., 1988, “Calcium and phosphorus,” in: Modern Nutrition in Health and Disease. ( M. E. Shils and V. R. Young, eds.), pp. 142–158, Lea and Febiger, Philadelphia.Google Scholar
  3. Barnett, E., and Nordin, B. E. C., 1960, The radiological diagnosis of osteoporosis: a new approach, Clin. Radiol. 11: 166.Google Scholar
  4. Bennike, P., and Bohr, H., 1990, “Bone mineral content in the past and present,” in: Osteoporosis 1990: Proceedings of the 3rd International Symposium on Osteoporosis, Copenhagen, Denmark. ( C. Christiansen and K. Overgaard, eds.), pp. 89–91, Osteopress Aps, Copenhagen.Google Scholar
  5. Bridges, P. S., 1989, Bone cortical area in the evaluation of nutrition and activity levels, Am. J. Hum. Biol. 1: 785.CrossRefGoogle Scholar
  6. Burr, D. B., 1980, The relationships among physical, geometrical and mechanical properties of bone, with a note on the properties of nonhuman primate bone, Yearbk. Phys. Anthropol. 23: 109.CrossRefGoogle Scholar
  7. Carlson, D. S., Armelagos, J. G., and Van Gerven, D. P., 1976, Patterns of age-related cortical bone loss (osteoporosis) within the femoral diaphysis, Hum. Biol. 48: 295.Google Scholar
  8. Cassidy, C. M., 1984, “Skeletal evidence for prehistoric subsistence adaptation in the central Ohio River valley,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 307–345, Academic Press, New York.Google Scholar
  9. Charles, P., 1992, Calcium absorption and calcium bioavailability, J Int. Med. 231:161. Cohen, M. N., 1989, Health and the Rise of Civilization, Yale University Press, New Haven.Google Scholar
  10. Cook, D. C., 1979, Subsistence base and health in prehistoric Illinois valley: evidence from the human skeleton, Med. Anthropol. 4: 109.CrossRefGoogle Scholar
  11. Dewey, J. R., Armelagos, G. J. and Bartley, M. H., 1969a, Femoral cortical involution in three Nubian archaeological populations, Hum. Biol. 41: 13.Google Scholar
  12. Dewey, J. R., Bartley, M. H., and Armelagos, G. J., 1969b, Rates of femoral cortical bone loss in two Nubian populations, Clin. Orthopaed 65: 61.Google Scholar
  13. Draper, H. H., 1986, The nutritional health of Eskimos, Coll. Anthropol. 10: 221.Google Scholar
  14. Eaton, S. B. and Nelson, D. A., 1991, Calcium in evolutionary perspective, Am. J. Clin. Nutr. 54:28IS.Google Scholar
  15. Eaton, S. B., Konner, M. J., and Shostak, M., 1988, Stone-agers in the fast lane: chronic degenerative diseases in evolutionary perspective, Am. J Med. 84: 739.CrossRefGoogle Scholar
  16. Ericksen, M. F., 1976, Cortical bone loss with age in three native American populations, Am. J. Phys. Anthropol. 45: 443.CrossRefGoogle Scholar
  17. Ericksen, M. F., 1980, “Patterns of microscopic bone remodeling in three aboriginal American populations,” in: Early Native Americans: Prehistoric Demography, Economy and Technology ( D. L. Browman, ed.), pp. 239–270, Mouton, The Hague.Google Scholar
  18. Frost, H. M., 1966, “Morphometry of bone in paleopathology,” in: Human Paleopathology ( S. Jarcho, ed.), pp. 131–150, Yale University Press, New Haven.Google Scholar
  19. Garn, S. M., 1970, The Earlier Gain and Later Loss of Cortical Bone in Nutritional Perspective, Charles C. Thomas, Springfield.Google Scholar
  20. Garn, S. M., Rohmann, C. G., Behar, M., Viteri, F., and Guzman, M. A., 1964, Compact bone deficiency in protein-calorie malnutrition, Science 145: 1444.CrossRefGoogle Scholar
  21. Garn, S. M., Poznanski, A. K., and Larson, K., 1976, “Metacarpal lengths, cortical diameters and areas from the 10-state nutritional survey,” in: Proceedings of the First Workshop on Bone Morphometry ( Z. F. G. Jaworski, ed.), pp. 367–391, University of Ottawa Press, Ottawa.Google Scholar
  22. Hancock, R. G. V., Grynpas, M. D., and Pritzker, K. P. H., 1989, The abuse of bone analyses for archaeological dietary studies, Archaeometry 31: 169.CrossRefGoogle Scholar
  23. Hanson, D. B., and Buikstra, J. E., 1987, Histomorphological alteration in buried human boneGoogle Scholar
  24. from the lower Illinois Valley: implications for paleodietary research, J. Arch. Sci. 14:549.Google Scholar
  25. Harper, A. B., Laughlin, W. S. and Mazess, R. B., 1984, Bone mineral content in St. Lawrence Island Eskimos, Hum. Biol. 56: 63.Google Scholar
  26. Hegsted, D. M., 1986, Calcium and osteoporosis, J. Nutr. 116: 2316.Google Scholar
  27. Hildes, J. A. and Schaefer, O., 1972, Health of Igloolik Eskimos and changes with urbanization, J. Hum. Evol. 2: 241.CrossRefGoogle Scholar
  28. Himes, J. H., 1978, Bone growth and development in protein-calorie malnutrition, World Rev. Nutr. Diet. 28: 143.Google Scholar
  29. Hummert, J. R., 1983, Cortical bone growth and dietary stress among subadults from Nubia’s Batn el Hajar, Am. J Phys. Anthropol. 62: 167.CrossRefGoogle Scholar
  30. Huss-Ashmore, R., Goodman, A. H., and Armelagos, G. J., 1982, “Nutritional inference from paleopathology,” in: Advances in Archaeological Method and Theory ( M. B. Schiffer, ed.), pp. 395–474, Academic Press, New York.Google Scholar
  31. Keith, M. S., 1981, “Cortical bone loss in juveniles of Dickson Mounds,” in: Biocultural Adaptation: Comprehensive Approaches to Skeletal Analysis (D. L. Martin and M. P. Bumstead, eds.), pp. 64–79, Research Reports No. 20, Dept. of Anthropology, University of Massachusetts, Amherst.Google Scholar
  32. Laughlin, W. Q., Harper, A. B., and Thompson, D. D., 1979, New approaches to the pre-and post-contact history of Arctic peoples, Am. J. Phys. Anthropol. 51: 579.CrossRefGoogle Scholar
  33. Leonard, W. R., and Robertson, M. L., 1992, Nutritional requirements and human evolution: a bioenergetics model, Am. J Hum. Biol. 4: 179.CrossRefGoogle Scholar
  34. Martin, D. L., 1983, Paleophysiological aspects of bone remodeling in the Meroitic, X-group and Christian populations from Sudanese Nubia, Am. J. Phys. Anthropol. 60: 83.CrossRefGoogle Scholar
  35. Martin, D. L., and Armelagos, G. J., 1979, Morphometrics of compact bone: an example from Sudanese Nubia, Am. J Phys. Anthropol. 51: 571.CrossRefGoogle Scholar
  36. Martin, D. L., Armelagos, G. J., and Van Gerven, D. P., 1984, “The effects of socioeconomic change in prehistoric Africa: Sudanese Nubia as a case study,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 193–214, Academic Press, New York.Google Scholar
  37. Martin, D. L., Goodman, A. H., and Armelagos, G. J., 1985, “Skeletal pathologies as indicators of quality and quantity of diet,” in: The Analysis of Prehistoric Diets ( R. I. Gilbert, Jr. and J. H. Mielke, eds.), pp. 227–279, Academic Press, New York.Google Scholar
  38. Mazess, R. B., 1966, Bone density in Sadlermiut Eskimo, Hum. Biol. 38: 42.Google Scholar
  39. Mazess, R. B., and Cameron, J. R., 1974, “Bone mineral content in normal U.S. whites,” in: Proceedings of the International Conference on Bone Mineral Measurement. ( R. B. Mazess, ed.). pp. 228–237, U.S. Government Printing Office, Washington, D.C.Google Scholar
  40. Mazess, R. B., and Jones, R., 1972, Weight and density of Sadlermiut Eskimo long bones, Hum. Biol. 44: 537.Google Scholar
  41. Mazess, R. B., and Mather, W., 1974, Bone mineral content of North Alaskan Eskimos, Am. J. Clin. Nutr. 27: 916.Google Scholar
  42. Mazess, R. B., and Mather, W., 1975, Bone mineral content in Canadian Eskimos, Hum. Biol. 47: 45.Google Scholar
  43. McHenry, H. M., 1992, Body size and proportions in early hominids, Am. J Phys. Anthropol. 87: 407.CrossRefGoogle Scholar
  44. Melton, III, L. J., and Wahner, H. W., 1989, Defining osteoporosis, Calcif. Tiss. Int. 45: 263.CrossRefGoogle Scholar
  45. Merbs, C., 1983, Patterns of Activity-Induced Pathology in a Canadian Inuit Population,National Museums of Canada, Mercury Series Publ. No. 119, Ottawa.Google Scholar
  46. Mielke, J. H., Armelagos, G. J., and Van Gerven, D. P., 1972, Trabecular involution in femoral heads of a prehistoric (X-group) population from Sudanese Nubia, Am. J. Phys. Anthropol. 36: 39.CrossRefGoogle Scholar
  47. Mosekilde, Lis, 1990, Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscope study (uncoupling of unloaded structures), Bone and Mineral 10: 13.CrossRefGoogle Scholar
  48. Nelson, D. A., 1984, Bone density in three archaeological populations, Am. J. Phys. Anthropol. 63: 198 (abstr.).Google Scholar
  49. Oswalt, W. H., 1967, Alaskan Eskimos, Chandler Publishing Co., San Francisco.Google Scholar
  50. Pawson, I. G., 1974, Radiographic determination of excessive bone loss in Alaskan Eskimos, Hum. Biol. 46: 369.Google Scholar
  51. Peacock, M., 1991, Calcium absorption efficiency and calcium requirements in children and adolescents, Am. J. Clin. Nutr. 54: 261S.Google Scholar
  52. Perzigian, A. J., 1973a, Osteoporotic bone loss in two prehistoric Indian populations, Am. J. Phys. Anthropol. 39: 87.CrossRefGoogle Scholar
  53. Perzigian, A. J., 1973b, The antiquity of age-associated bone demineralization in man, J. Am. Geriat. Soc. 21: 100.Google Scholar
  54. Pfeiffer, S., 1990, The evolution of human longevity: distinctive mechanisms? Can. J. Aging 9: 95.CrossRefGoogle Scholar
  55. Pfeiffer, S., and Fairgrieve, S. I., 1994, “Evidence from ossuaries: the effect of contact on the health of Iroquoians,” in: In the Wake of Contact: Biological Responses to Conquest ( C. S. Larsen and G. Milner, eds.), pp. 47–61, Wiley-Liss, New York.Google Scholar
  56. Pfeiffer, S., and King, P., 1983, Cortical bone formation and diet among protohistoric Iroquoians, Am. J Phys. Anthropol. 60: 23.CrossRefGoogle Scholar
  57. Reinhard, K. J., 1992, Parasitology as an interpretive tool in archaeology, Am. Antiq. 57: 231.CrossRefGoogle Scholar
  58. Richman, E. A., Ortner, D. J., and Schulter-Ellis, F. P., 1979, Differences in intracortical bone remodeling in three aboriginal American populations, Calcif. Tissue Int. 28: 209.CrossRefGoogle Scholar
  59. Roberts, C., and Wakely, J., 1992, Microscopical findings associated with the diagnosis of osteoporosis in paleopathology, Int. J Osteoarch. 2: 23.CrossRefGoogle Scholar
  60. Roosevelt, A. N., 1984, “Population, health, and the evolution of subsistence: conclusions from the conference,” in: Paleopathology at the Origins of Agriculture ( M. N. Cohen and G. J. Armelagos, eds.), pp. 559–583, Academic Press, New York.Google Scholar
  61. Ruff, C. B., 1988, Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling, J. Hum. Evol. 17: 687.CrossRefGoogle Scholar
  62. Ruff, C. B., 1992, “Biomechanical analyses of archaeological human skeletal samples,” in: Skeletal Biology of Past Peoples: Research Methods ( S. R. Saunders and M. A. Katzenberg, eds.), pp. 37–52, Wiley-Liss, New York.Google Scholar
  63. Ruff, C. B., and Hayes, W. C., 1984, Bone-mineral content of the lower limb, J Bone Jt. Surg. 66A: 1024Google Scholar
  64. Ruff, C. B. and Larsen, C. S., 1990, “Postcranial biomechanical adaptations to subsistence strategy changes on the Georgia coast,” in: The Archaeology of Mission Santa Catalina de Guale: 2. Biocultural Interpretations of a Population in Transition (C. S. Larsen, ed.), pp. 94–120, Anthropological Papers of the American Museum of Natural History, No. 68, New York.Google Scholar
  65. Ruff, C. B., Larsen C. S., and Hayes, W. C., 1984, Structural changes in the femur with the transition to agriculture on the Georgia coast, Am. J. Phys. Anthropol. 64: 125.CrossRefGoogle Scholar
  66. Sambrook, P. N., Browne, C. D., Eisman, J. A., and Bourke, S. J., 1986, A case of crush-fracture osteoporosis from late Roman Pella in Jordan. OSSA 13: 167.Google Scholar
  67. Saunders, S. R., and Melbye, F. J., 1990, Subadult mortality and skeletal indicators of health in Late Woodland Ontario Iroquois, Can. J. Arch. 14: 61.Google Scholar
  68. Schaefer, O., Timmermans, J. F. W., Eaton, R. D. P., and Matthews, A. R., 1980, General and nutritional health in two Eskimo populations at different stages of acculturation, Can. J. Publ. Health 71: 397.Google Scholar
  69. Smith, P., Bloom, R. A., and Berkowitz, J., 1983, Diachronic trends in humeral cortical thickness of Near Eastern populations, J. Hum. Evol. 13: 603.CrossRefGoogle Scholar
  70. Southern, R. A., 1990, Cortical Bone Quality Among Pre-Iroquoian and Iroquoian Populations of the Lower Great Lakes Region, Masters thesis, Department of Anthropology, McMaster University, Hamilton, Ontario.Google Scholar
  71. Stout, S. D., 1978, Histological structure and its preservation in ancient bone, Curr. Anthropol. 19: 601.CrossRefGoogle Scholar
  72. Stout, S. D., and Teitlebaum, S. L., 1976, Histomorphometric determination of formation rates of archaeological bone, Calcif. Tissue Res. 21: 163.CrossRefGoogle Scholar
  73. Thompson, D. D., and Cowen, K. S., 1984, Age at death and bone biology of the Barrow mummies, Arctic Anthropol. 21: 83.Google Scholar
  74. Thompson, D. D., and Guiness-Hey, M., 1981, Bone mineral-osteon analysis of Yupik-Inupiak skeletons, Am. J. Phys. Anthropol. 55: 1.CrossRefGoogle Scholar
  75. Thompson, D. D., Slater, E. M., and Laughlin, W. S., 1981, Bone core analysis of Baffin Island skeletons, Arctic Anthropol. 18: 87.Google Scholar
  76. Thompson, D. D., Posner, A. S., Laughlin, W. S., and Blumenthal, N. C., 1983, Comparison of bone apatite in osteoporotic and normal Eskimos, Calcif. Tissue. Int. 35: 392.CrossRefGoogle Scholar
  77. Van Gerven, D. P., 1973, Thickness and area measurements as parameters of skeletal involution of the humerus, femur and tibia, J. Gerontology 28: 40.CrossRefGoogle Scholar
  78. Van Gerven, D. P., and Armelagos, J. G., 1970, Cortical involution in prehistoric Mississippian femora, J. Gerontology 25: 20.CrossRefGoogle Scholar
  79. Van Gerven, D. P., Hummert, J. R., and Burr, D. B., 1985, Cortical bone maintenance and geometry of the tibia in prehistoric children from Nubia’s Batn el Hajar, Am. J. Phys. Anthropol. 66: 275.CrossRefGoogle Scholar
  80. Van Gerven, D. P., Hummert, J. R., Prendergast Moore, K., and Sandford, M. K., 1990, “Nutrition, disease, and the human life cycle: a bioethnography of a medieval Nubian community,” in: Primate Life History and Evolution ( J. DeRousseau, ed.), pp. 297–323, Wiley-Liss, New York.Google Scholar
  81. Weinstein, R. S., Simmons, D. J., and Lovejoy, C. 0., 1981, Ancient bone disease in a Peruvian mummy revealed by quantitative skeletal histomorphometry. Am. J. Phys. Anthropol. 54: 321.CrossRefGoogle Scholar
  82. Wood, J.W., Milner, G.R., Harpending, H.C., and Weiss, K.M. 1992, The osteological paradox: problems of inferring prehistoric health from skeletal samples, Current Anthropol. 33: 343.CrossRefGoogle Scholar
  83. Yuen, D. E., Draper, H. H., and Trilok, G., 1984, Effect of dietary protein on calcium metabolism in man, Nutr. Abstr. and Rev. Clin. Nutr. 54: 447.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Susan K. Pfeiffer
    • 1
  • Richard A. Lazenby
    • 2
  1. 1.School of Human BiologyUniversity of GuelphGuelphCanada
  2. 2.Anthropology ProgrammeUniversity of Northern British ColumbiaPrince GeorgeCanada

Personalised recommendations