The Gain and Loss of Bone in the Human Life Cycle

  • John F. Aloia
Part of the Advances in Nutritional Research book series (ANUR, volume 9)


Osteoporosis may be defined as a diminished quantity and quality of bone that increases the risk for fracture. The fractures given most attention involve the vertebrae, femur and radius, although other fractures are also related to osteoporosis. Fractures of the distal forearm (Colles’) and vertebrae, which contain large amounts of trabecular bone, increase after menopause. The increase in fracture incidence reaches a plateau at 65 years for the wrist, but the incidence continues to rise with increasing age for the vertebrae. The incidence of fractures with a more proportionate mix of compact and trabecular bone increases slowly, and then exponentially in the elderly, resulting in increased fractures in the femur, proximal humerus, proximal tibia and pelvis (Figure 1).


Bone Mineral Density Lumbar Spine Bone Loss Femoral Neck Bone Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahuja, M., 1969, Normal variation in the density of selected human bones in North India, J. Bone Joint Surg. 51B: 719.Google Scholar
  2. Aloia, J.F., Ross, P., Vaswani, A., Zanzi, I., and Cohn, S., 1982, Rate of bone loss in postmenopausal and osteoporotic women, Am. J. Physiol. 242: E82.Google Scholar
  3. Aloia, J.F., Vaswani, A., Yeh, J.K., Ross, P., Ellis, K., and Cohn, S.H., 1983, Determinants of bone mass in postmenopausal women, Arch. Intern. Med. 143: 1700.CrossRefGoogle Scholar
  4. Aloia, J.F., Vaswani, A., Ellis, K., Yuen, K., and Cohn, S.H., 1985a, A model for involutional bone loss, J. Lab. Clin. Med. 106: 630.Google Scholar
  5. Aloia, J.F., Cohn, S.H., Vaswani, A., Yeh, J.K., and Ellis, K., 1985b, Risk factors for postmenopausal osteoporosis, Am. J. Med. 78: 95.CrossRefGoogle Scholar
  6. Aloia, J.F., McGowan, D., Vaswani, A., Ross, P., and Cohn, S.H., 1991, The relationship of menopause to skeletal and muscle mass, Am. J. Clin. Nutr. 53: 1378.Google Scholar
  7. Arnold, J.S., 1973, Amount and quality of trabecular bone in osteoporotic vertebral fractures, Clin. Endocrinol. Metab. 2: 221.CrossRefGoogle Scholar
  8. Avioli, L. V., 1987, The Osteoporotic Syndrome: Detection, Prevention and Treatment, 2d ed., W. B. Saunders, Philadelphia.Google Scholar
  9. Banzer, D.H., Schneider, U., Risch, W.D., and Botsch, H., 1976, Roentgen signs of vertebral demineralization and mineral content of peripheral cancellous bone. Am. J. Roentgen. 126: 1306.CrossRefGoogle Scholar
  10. Basle, M.F., Mauras, Y., and Audran, M., 1990, Concentration of bone elements in osteoporosis, J. Bone Min. Res. 5: 41.CrossRefGoogle Scholar
  11. Beck, T.J., Ruff, C.B., Scott, W.W., Jr., Plato, C., Tobin, J.D., and Quan, C.A., 1992, Sex differences in geometry of the femoral neck with aging: A structural analysis of bone mineral data, Calcif. Tissue Int. 50: 24.CrossRefGoogle Scholar
  12. Bell, N.H., Shary, J., Stevens, J., Garza, M., Gordon, L., and Edwards, J., 1991, Demonstration that bone mass is greater in black than in white children, J. Bone Min. Res. 6: 719.CrossRefGoogle Scholar
  13. Birkenhager-Frenkel, D.H., Courpron, F., Hupscher, E.A., Clermonts, E., Coutino, M.F., Schmitz, P.I.M., and Meunier, P.J., 1988, Age-related changes in cancellous bone structure: A two-dimensional study in the transiliac and iliac crest biopsy sites, Bone and Mineral 4: 197.Google Scholar
  14. Block, J.E., Smith, R., Steiger, P., Glueer, C.C., Ettinger, B., and Genant, H.K., 1989, Models of spinal trabecular bone loss as determined by quantitative computed tomography, J. Bone Min. Res. 4: 249.CrossRefGoogle Scholar
  15. Bonjour, J.P., Theintz, G., and Buchs, B., 1991, Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence, J. Clin. Endocrinol. Metab. 73: 555.CrossRefGoogle Scholar
  16. Buchanan, J.R., Myers, C., Lloyd, T., and Greer, R.B., 1988, Early vertebral trabecular bone loss in normal premenopausal women, J. Bone. Min. Res. 3: 583.CrossRefGoogle Scholar
  17. Burkhardt, R., Kettner, G., Bohm, W., Schmidmeier, M., Schlag, R., Frisch, B., Mallmann, B., Eisenmenger, W., and Gilg, T.H., 1987, Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study, Bone 8: 157.CrossRefGoogle Scholar
  18. Chalmers, J. and Weaver, J.K., 1966, Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content, J. Bone Joint Surg. 48A: 299.Google Scholar
  19. Chappard, D., Alexandre, CH., Robert, J.M., and Riffat, G., 1991, Relationships between bone and skin atrophies during aging, Acta Anat. 41: 239.CrossRefGoogle Scholar
  20. Cohn, S.H., Vaswani, A.N., Aloia, J.F., Roginsky, M.S., Zanzi, I., and Ellis, K.J., 1976a, Changes in body chemical composition with age measured by total body neutron activation, Metabolism 25: 85.CrossRefGoogle Scholar
  21. Cohn, S.H., Vaswani, A.N., Zanzi, I., and Ellis, K., 19766, The effect of aging on bone mass in adult women, Am. J Physiol. 230: 143.Google Scholar
  22. Cohn, S.H., Abesamis C., Zanzi, I., Aloia, J.F., Yasumura, S., and Ellis, K.J., 1977a, Body elemental composition: comparison between black and white adults, Am. J. Physiol. 232: E419.Google Scholar
  23. Cohn, S.H., Abesamis C., Yasumura, S., Aloia, J.., Zanzi, I., and Ellis, K.J., 1977b, Comparative skeletal mass and radial bone mineral content in black and white women, Metabolism 26: 171.CrossRefGoogle Scholar
  24. Cohn, S.H., Aloia, J.F., Vaswani, A.N., Zanzi, I., Varetsky, D., and Ellis, K., 1981, Age and sex related changes in bone mass measured by neutron activation. Abstract at the International Symposium on Osteoporosis, Jerusalem, Israel, 5/31–6/4/81 (unpubl.).Google Scholar
  25. Cohn, S.H., Aloia, J.F., Vaswani, A.N.,Yuen, K., Yasumura, S., and Ellis, K.J. 1984, “Model for determining women at risk for developing osteoporosis: by total body neutron activation, photon absorptiometry of spine and radius” (abstract), in: Proceedings of the Copenhagen International Symposium on Osteoporosis, June 3–8, 1984, Wiley, New York.Google Scholar
  26. Compston, J.E., Mellish, R.W., and Garrahan, N.J., 1987, Age-related changes in iliac crest trabecular microanatomic bone structure in man, Bone 8: 289.CrossRefGoogle Scholar
  27. Davis, J.W., Ross, P.D., Vogel, J.M., and Wasnich, R., 1991, Age-related changes in bone mass among Japanese-American men, Bone and Mineral 15: 227.CrossRefGoogle Scholar
  28. Dempster, D.V., Shane, E., Horbert, W., and Lindsay, R., 1986, A simple method for correlative light and scanning electron microscopy of human iliac crest bone biopsies: qualitative observations in normal and osteoporotic subjects, J Bone Min. Res. 1: 15.CrossRefGoogle Scholar
  29. DePriester, J.A., Cole, T.J., and Bishop, N.J., 1991, Bone growth and mineralization in children aged 4 to 10 years, Bone and Mineral 12: 57.CrossRefGoogle Scholar
  30. Dequeker, J., Remans, J., Franssen, R., and Waes, J., 1971, Ageing patterns of trabecular and cortical bone and their relationship, Calcif. Tissue Res. 7: 23.CrossRefGoogle Scholar
  31. DeSchepper, J., Derde, M.P., Van den Broeck, M., Piepsz, A., and Jonckheer, M.H., 1991, Normative data for lumbar spine bone mineral content in children: influence of age, height, weight, and pubertal stage, J. Nuclear Med. 32: 216.Google Scholar
  32. Dhuper, S., Warren, M.P., Brooks-Gunn, J., and Fox, R., 1990, Effects of hormonal status on bone density in adolescent girls, J Clin. Endocrinol. Metab. 71: 1083.CrossRefGoogle Scholar
  33. Elliott, J.R., Gilchrist, N.L., Wells, J.E., Turner, J.G., Ayling, E., Gillespie, W.J., Sainsbury, R., Hornblow, A., and Donald, R.A., 1990, Effects of age and sex on bone density at the hip and spine in a normal Caucasian New Zealand population, NZ Med. J. 103: 33.Google Scholar
  34. Evans, F.G., 1976, Mechanical properties and histology of cortical bone from younger and older men, Anat. Rec. 185: 1.CrossRefGoogle Scholar
  35. Eyre, D.R., Dickson, I.R., and Van Ness, K., 1988, Collagen cross-linking in human bone and articular cartilage, Biochem. J. 252: 495.Google Scholar
  36. Field, R.E., Dixon, A.K., Lawrence, J.P., and Rushton, N., 1990, Bone density distribution within the femoral head and neck, Skeletal Radiol. 19: 319.CrossRefGoogle Scholar
  37. Foldes, J., Parfitt, A.M., Shih, M.S., Rao, D.S., and Kleerekoper, M., 1991, Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Min. Res. 6: 759.CrossRefGoogle Scholar
  38. Gallagher, J.C., Goldgar, D, and Moy, A., 1987, Total bone calcium in normal women: Effect of age and menopause status, J Bone Min. Res. 2: 491.CrossRefGoogle Scholar
  39. Garn, S.M., 1972, The course of bone gain and the phases of bone loss, Orthop. Clin. N. Am. 3: 503.Google Scholar
  40. Garn, S.M., Clark, D.C., and Trowbridge, F.L., 1973, Tendency toward greater stature in American black children, Am. J Dis. Child. 126: 164.Google Scholar
  41. Gilsanz, V., Gibbens, D.T, and Roe, T.F., 1988, Vertebral bone density in children: effect of puberty, Radiology 166: 847.Google Scholar
  42. Gilsanz, V., Roe, T.F., Mora, S., Costin, G., and Goodman, W., 1991, Changes in vertebral bone density in black girls and white girls during childhood and puberty, New Engl. J. Med. 535: 1597.CrossRefGoogle Scholar
  43. Glastre, C., Braillon, P., David, L., Cochat, P., Meunier, P.J., and Delmas, P.D., 1990, Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: Correlations with growth parameters, J. Clin. Endocrinol. Metab. 70: 1330.CrossRefGoogle Scholar
  44. Haasner, E., Krokowski, E., and Bach, K., 1967, Normalwerte des Hydroxylapatitgehaltes im Skelet in Abhangigkeit von Lakalisation, Lebensalter and Geschlecht, Klin. Wochenschr. 45: 575.CrossRefGoogle Scholar
  45. Hagino, H., Yamamoto, K., Teshima, R., Kishimoto, H., and Kagawa, T.,1992, Radial bone mineral changes in pre-and postmenopausal healthy Japanese women: Cross-sectional and longitudinal studies, J. Bone Min. Res. 7: 147.Google Scholar
  46. Hall, M.L., Heavens, J., Cullum, I.D., and Ell, P.J., 1990, The range of bone density in normal British women, Br. J. Radio. 6: 366.Google Scholar
  47. Hansson, T., and Roos, B., 1980, The amount of bone mineral in the lumbar spine in women 35 to 80 years of age, Presented at Tenth European Symposium on Osteoarthrology, Malmo, Sweden.Google Scholar
  48. Havivi, E., Reshef, A., Schwartz, A., Guggenheim, K., Bernstein, D.S., Hegsted, D.M., and Stare, F.J., 1971, Comparisons of metacarpal bone loss with physical and chemical characteristics of vertebrae and ribs, Israel J. Med. Sci. 7: 1055.Google Scholar
  49. Heuck, F.H.W., 1970, “Quantitative measurements of mineral content in bone diseases,” in: Symposium Ossium ( A. M. Jelliffe and B. Strickland, eds.), E.S. Livingstone, Edinburgh.Google Scholar
  50. Hoiseth, A., Alho, A., and Husby, T., 1990, Femoral cortical/cancellous bone related to age, Acta Radio!. 31: 626.Google Scholar
  51. Hui, S.L., Wiske, P.S., Norton, J.A., and Johnston, C.C., 1982, A prospective study of change in bone mass with age in postmenopausal women, J. Chron. Dis. 35: 715.CrossRefGoogle Scholar
  52. Hui, S.L., Slemenda, C.W., Johnston, C.C., and Appledorn, C.R., 1987, Effects of age and menopause on vertebral bone density, Bone and Mineral 2: 141.Google Scholar
  53. Hurxthal, L.M., and Vose, G.P., 1969, The relationship of dietary calcium intake to radiographic bone density in normal and osteoporotic persons, Calcif. Tissue Res. 4: 245.CrossRefGoogle Scholar
  54. Johnston, C.C., Jr., Smith, D.M., and Khairi, M.R.A., 1975, “Prospective and cross-sectional study of radial bone loss in post-menopausal women,” in: Calcified Tissues, Proceedings of XIth European Symposium on Calcified Tissues ( S. Pors Nielsen, ed.), Springer-Verlag, New York.Google Scholar
  55. Johnston, C.C., Jr., Norton, J.A., Jr., Khairi, R.A., and Longcope, C., 1979, “Age-related bone loss,” in: Osteoporosis II. (U. Barzell, ed.), pp. 59–72, Grune & Stratton, New York.Google Scholar
  56. Kalender, W.A., Felsenberg, D., Louis, O., Lopez, P., Klotz, E., Osteau, M., and Fraga, J., 1989, Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography, Europ. J. Radio 9: 75.Google Scholar
  57. Katzman, D.K., Bachrach, L.K., Carter, D.R., and Marcus, R., 1991, Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls, J. Clin. Endocrinol. Metab. 73: 1332.CrossRefGoogle Scholar
  58. Kelly, P.J., Twomey, L., Sambrook, P.N., and Eisman, J.A., 1990, Sex differences in peak adult bone mineral density, J. Bone Min. Res. 5: 1169.CrossRefGoogle Scholar
  59. Kin, K., Kushida, K., Yamazaki, K., Okamoto, S., and Inoue, T., 1991, Bone mineral density of the spine in normal Japanese subjects using dual-energy x-ray absorptiometry: effect of obesity and menopausal status, Calcif. Tissue Int. 49: 101.CrossRefGoogle Scholar
  60. Kragstrup, J., Melsen, F., and Mosekilde, L., 1983, Thickness of lamellae in normal human iliac trabecular bone, Metab. Bone Dis. Rel. Res. 4: 291.CrossRefGoogle Scholar
  61. Krolner, B., and Nielsen, S., 1982, Bone mineral content of the lumbar spine in normal and osteoporotic women: cross-sectional and longitudinal studies, Clin. Sci. 62: 329.Google Scholar
  62. Krolner, B., and Pors Nielsen, S., 1980, Measurement of bone mineral content (BMC) of the lumbar spine. I: Theory and application of a new two-dimensional dual-photon attenuation method, Scand. J Clin. Lab. Invest. 40: 653.CrossRefGoogle Scholar
  63. Laitinen, K., Valimaki, M., and Keto, P., 1991, Bone mineral density measured by dual-energy x-ray absorptiometry in healthy Finnish women, Calcif. Tissue Int. 48: 224.CrossRefGoogle Scholar
  64. Liel, Y., Edwards, J, Shary, J., Spicer, D.M., Gordon, L., and Bell, N.H., 1988, The effect of race and body habitus on bone mineral density of the radius, hip, and spine in premenopausal women, J. Clin. Endocrinol. Metab. 66: 1247.CrossRefGoogle Scholar
  65. Lindquist, O., Bengtsson, C., Hansson, T., and Jonsson, R., 1983, Changes in bone mineral content of the axial skeleton in relation to aging and the menopause, Scand. J. Clin. Lab. Invest. 43: 333.Google Scholar
  66. Lloyd, T., Rollings, N., Andon, M.B., Demers, L.M., Eggli, D.F., Kieselhorst, K., Kulin, H., Landis, J.R., Maratel, J.K., Orr, G., and Smith, P., 1992, Determinants of bone density in young women: I. Relations among pubertal development, total body bone mass, and total body bone density in premenarchal females, J. Clin. Endocrinol. Metab. 75: 383.CrossRefGoogle Scholar
  67. Marcus, R., Kosek, J., Pfefferbaum, A., and Horning, S., 1983, Age-related loss of trabecular bone in premenopausal women: a biopsy study, Calcif. Tissue Int. 35: 406.CrossRefGoogle Scholar
  68. Mazess, R.B., 1982, On aging bone loss, Clin. Orthop. Rel. Res. 165: 239.Google Scholar
  69. Mazess, R.B., and Barden, H.S., 1991, Bone density in premenopausal women: effects of age, dietary intake, physical activity, smoking, and birth-control pills, Am. J. Clin. Nutr. 53: 132.Google Scholar
  70. Mazess, R.B., Barden, H.S., Ettinger, M., Johnston, C., Dawson-Hughes, B., Baran, D., Powell, M., and Notelovitz, M., 1987, Spine and femur density using dual-photon absorptiometry in US white women, Bone and Mineral 2: 211.Google Scholar
  71. McCormick, D.P., Ponder, S.W., Fawcett, H.D., and Palmer, J.L., 1991, Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences, J. Bone Min. Res. 6: 507.CrossRefGoogle Scholar
  72. Meier, D., Luckey, M., Wallenstein, S., and Lapinski, R., 1992, Significant premenopausal bone loss in white and black women: a longitudinal study, J. Bone Min. Res. 7: S135 (abstract).Google Scholar
  73. Mosekilde, L., 1988, Age-related changes in vertebral trabecular bone architecture—assessed by a new method, Bone 9: 247.CrossRefGoogle Scholar
  74. Mosekilde, L., Mosekilde, L., and Danielsen, C.C., 1987, Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone 8: 79.CrossRefGoogle Scholar
  75. Mueller, K.H., Trias, A. and Ray, R.D., 1966, Bone density and composition: Age-related and pathological changes in water and mineral content, J. Bone Joint Surg. 48A: 140.Google Scholar
  76. Nilas, L., Gotrfredsen, A., Hadberg, A., and Christiansen, C., 1988, Age-related bone loss in women evaluated by the single and dual photon technique, Bone and Mineral 4: 95.Google Scholar
  77. Nordin, B.E.C., Need, A.G., and Chatterton, B.E., 1990, The relative contributions of age and years since menopause to postmenopausal bone loss, J. Clin. Endocrinol. Metab. 70: 83.CrossRefGoogle Scholar
  78. Nordin, B.E.C., Need, A.G., Bridges, A., and Horowitz, M., 1992, Relative contributions of years since menopause, age, and weight to vertebral density in postmenopausal women, J Clin. Endocrinol. Metab. 74: 20.CrossRefGoogle Scholar
  79. Norimatsu, H., Mori, S., Uesato, T., Yoshikawa, T., and Kasuyama, N., 1989, Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan, Bone and Mineral 5: 213.CrossRefGoogle Scholar
  80. Parfitt, A.M., Mathews, C.H.E., Villanueva, A.R., Kleerekoper, M., Frame, B., and Rao, D.S., 1983, Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis, J. Clin. Invest. 72: 1396.CrossRefGoogle Scholar
  81. Pesch, H.J., Becker, T., and Bischoff, W., 1990, `Physiological osteoporosis’ and `osteoblast insufficiency’ in old age, Arch. Orthop. Trauma Surg. 110:1.Google Scholar
  82. Ponder, S.W., McCormick, D.P., Fawcett, H.D., Palmer, J.L., McKernan, M.G., and Brouhard, B.H., 1990, Spinal bone mineral density in children aged 5.00 through 11.99 years, Am. J. Dis. Child. 144: 1346.Google Scholar
  83. Pun, K.K., Wong, F.H.W., and Loh, T., 1991, Rapid postmenopausal loss of total body and regional bone mass in normal southern Chinese females in Hong Kong, Osteoporosis Int. 1: 87.Google Scholar
  84. Recker, R.R., Kimmel, D.B., and Parfitt, A.M., 1988, Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females, J. Bone Min. Res. 3: 133.CrossRefGoogle Scholar
  85. Recker, R.R, Davies, K.M., Hinders, S.M., Heaney, R.P., Stegman, M.R., and Kimmel, D.B., 1992, Bone gain in young adult women, JAMA 368: 2403.CrossRefGoogle Scholar
  86. Reginster, J.Y., Deroisy, R., Albert, A., Sarlet, N., Collette, J., and Franchimont, P., 1990, Dual photon absorptiometry of lumbar spine in West European (Belgian) postmenopausal females: normal range and fracture threshold, Clin. Rheumatol. 9: 220.CrossRefGoogle Scholar
  87. Rico, H., Revilla, M., Hernandez, E.R., Villa, L.F., and Alvarez del Buergo, M., 1992, Sex differences in the acquisition of total bone mineral mass peak assessed through dual-energy x-ray absorptiometry, Calcif. Tissue Int. 51: 251.CrossRefGoogle Scholar
  88. Riggs, B.L., 199la, Physician’s Resource Manual on Osteoporosis,2d ed., National Osteoporosis Foundation, Washington.Google Scholar
  89. Riggs, B.L., 1991b, Overview of osteoporosis, West. J Med. 154: 63.Google Scholar
  90. Riggs, B.L., Wahner, H.W., Seeman, E., Offord, K.P., Dunn, W.L., Mazess, R.B., Johnson, K.A. and Melton, L.J., 1982, Changes in bone mineral density of the proximal femur and spine with aging, J Clin. Invest. 70: 716.CrossRefGoogle Scholar
  91. Riggs, B.L., Wahner, H.W., Dunn, W.L., Mazess, R.B., Offord, K.P., and Melton, L.J., III, 1981, Differential changes in bone mineral density of the appendicular skeleton with aging, J Clin. Invest. 67: 328.CrossRefGoogle Scholar
  92. Riggs, B.L., Wahner, H.W., Melton, L.J., III, Richelson, L.S., Judd, H.L. and Offod, K.P., 1986, Rates of bone loss in the appendicular and axial skeletons of women, J Clin. Invest., 77: 1487.CrossRefGoogle Scholar
  93. Rosenthal, D.I., Mayo-Smith, W., Hayes, C.W., Khurana, J.S., Biller, B., Neer, R.M., and Klibanski, A., 1989, Age and bone mass in premenopausal women, J. Bone Min. Res. 4: 533.CrossRefGoogle Scholar
  94. Rubin, C.D., 1991, Southwestern internal medicine conference: Age-related osteoporosis, Am. J. Med. Sci. 301: 281.CrossRefGoogle Scholar
  95. Sambrook, P.N., Eisman, J.A., Furler, S.M., and Pocock, N.A., 1987, Computer modeling and analysis of cross-sectional bone density studies with respect to age and the menopause, J. Bone Min. Res. 2: 109.CrossRefGoogle Scholar
  96. Seto, H., Kamei, T., Futatsuya, R., Banba, Y., Ihaa, F., Kakishita, M., and Nanbu, I., 1990, Bone mineral density of the lumbar spine by dual photon absorptiometry: Age-related regression in normal Japanese subjects and fracture threshold in osteoporosis, Radiation Med. 8: 61.Google Scholar
  97. Sowers, M.F., Kshirsagar, A., Crutchfield, M., and Updike, S., 1991, Body composition, age, and femoral bone mass of young adult women, Ann. Epidemiol. 1: 245.CrossRefGoogle Scholar
  98. Stevenson, J.C., Lees, B., Devenport, M., Cust, M.P., and Ganger, K.F. 1989, Determinants of bone density in normal women: risk factors for future osteoporosis? BMJ 298: 924.CrossRefGoogle Scholar
  99. Sugimoto, T., Tsutsumi, M., Fujii, Y., Kawalaatsi, M., Negishi, H., Lee, M., Sai, K., Ukase, M., and Fujita, T., 1992, Comparison of bone mineral content among Japanese, Koreans, and Taiwanese assessed by dual-photon absorptiometry, J. Bone Min. Res. 7: 153.CrossRefGoogle Scholar
  100. Thompson, D.D., 1980, Age changes in bone mineralization, cortical thickness, and Haversian canal area, Calcif. Tissue Int., 31: 5.Google Scholar
  101. Trotter, M., Broman, G.E., and Peterson, R.R., 1960, Densities of bones of white and Negro skeletons, J. Bone Joint Surg. (Am.) 42: 50.Google Scholar
  102. Trouerbach, W.T., de Man, S.A., Gommers, D., Zwamborn, A., and Grobbee, D.E., 1991, Determinants of bone mineral content in childhood, Bone and Mineral 13: 55.Google Scholar
  103. Tsai, K.S., Huang, K.M., and Chieng, P.U., 1991, Bone mineral density of normal Chinese women in Taiwan, Calcif. Tissue Int. 48: 161.CrossRefGoogle Scholar
  104. Twomey, L., Taylor, J. and Furniss, B., 1983, Age changes in the bone density and structure of the lumbar vertebral column, J. Anat. 136: 15.Google Scholar
  105. van Berkum, F.N.R., Pols, H.A.P., Kooij, P.P.M., and Birkenhager, J.C., 1988, Peripheral and axial bone mass in Dutch women: relationship to age and menopausal state, Neth. J. Med. 32: 226.Google Scholar
  106. Vega, E., Mautalen, C, Gomez, H., Garrido, A., Melo, L., and Sahores, A.O., 1991, Bone mineral density in patients with cervical and trochanteric fractures of the proximal femur, Osteoporosis Int. 1: 81.Google Scholar
  107. Wahner, H.W., Dunn, W.L., Brown, M.L., Morin, R.L., and Riggs, B.L., 1988, Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine, Mayo Clin. Proc. 63: 1075.CrossRefGoogle Scholar
  108. Weaver, J.K., and Chalmers, J., 1966, Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. I. Age changes in cancellous bone, J Bone Joint Surg. 48A: 289.Google Scholar
  109. Whyte, M.P., Bergfeld, M.A., Murphy, W.A., Avioli, L.V., and Teitelbaum, S.L., 1982, Postmenopausal osteoporosis, a heterogeneous disorder as assessed by histomorphometric analysis of iliac crest bone from untreated patients, Am. J. Med. 73: 193.CrossRefGoogle Scholar
  110. Yano, K., Wasnich, R.D., Vogel, J.M., and Heilbrun, K.L., 1984, Bone mineral measurements among middle-aged and elderly Japanese residents in Hawaii, Am. J. Epidemiol. 119: 751.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • John F. Aloia
    • 1
  1. 1.Department of MedicineWinthrop-University HospitalMineolaUSA

Personalised recommendations