Survival Probabilities of Disoriented Chiral Domains in Relativistic Heavy Ion Collisions

  • Rene Bellwied
  • Sean Gavin
  • Tom Humanic


Disoriented chiral condensates (DCC) were recently proposed as potential signatures for chiral symmetry restoration [1, 2, 3, 4]. In the theory of DCC formation, the explicit chiral symmetry breaking which occurs during the phase transition from a plasma phase, where all masses are zero, to normal nuclear matter, where particles have mass, is accompanied by the formation of extended domains in which the chiral field is misaligned with respect to the true vacuum direction.


Transverse Momentum Domain Formation Charged Pion Transverse Momentum Distribution Final State Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Bjorken, Inter. J. Mod. Phys. A7 (1992) 4189ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Anselm and M.G. Ryskin, Phys. Lett. B266 (1991) 482ADSGoogle Scholar
  3. 3.
    J.P. Blaizot and A. Krzywicki, Phys. Rev. D46 (1992) 246ADSGoogle Scholar
  4. 4.
    K. Rajagopal and F. Wilczek, Nucl. Phys. B404 (1993) 577ADSCrossRefGoogle Scholar
  5. 5.
    J. Randrup, Contribution to these Proceedings (1998)Google Scholar
  6. 6.
    S. Pratt, Phys. Lett. B301 (1993) 159.ADSGoogle Scholar
  7. 7.
    T. Nayak, Quark Matter 97, Tsukuba, Japan, to be publishedGoogle Scholar
  8. 8.
    T.C. Brooks et al., Phys. Rev. D55 (1997) 5667ADSGoogle Scholar
  9. 9.
    C.M.G. Lattes, Y. Fujimoto, and S. Hasegawa, Phys. Rep. 65 (1980) 151ADSCrossRefGoogle Scholar
  10. 10.
    J. Symons, Contribution to these Proceedings (1998)Google Scholar
  11. 11.
    X.N. Wang and M. Gyulassy, Phys. Rev. D44 (1991) 3501Google Scholar
  12. 12.
    J.I. Kapusta and A.M. Srivastava, Phys. Rev. D50 (1994) 5379ADSGoogle Scholar
  13. 13.
    K. Rajagopal and F. Wilczek, Nucl. Phys. B379 (1993) 395ADSCrossRefGoogle Scholar
  14. 14.
    S. Gavin, A. Goksch and R.D. Pisarski. Phys. Rev. Lett. 72 (1994) 2143ADSCrossRefGoogle Scholar
  15. 15.
    D. Boyanovsky, D.L. Lee Phys. Rev. D48 (1993) 800ADSGoogle Scholar
  16. 16.
    S. Gavin and B. Mueller, Phys. Lett. B329 (1994) 486ADSGoogle Scholar
  17. 17.
    J. Randrup, Nucl. Phys. A616 (1996) 531ADSGoogle Scholar
  18. 18.
    U. Ornik et al., Los Alamos Preprint (LA-UR-96-1615) and nucl-th/9808027 (1996)Google Scholar
  19. 19.
    Y. Kluger, Los Alamos Preprint (LA-UR-94-1566) and hep-ph-9405279 (1994)Google Scholar
  20. 20.
    K. Rajagopal, Presentation at the STAR Collaboration Meeting, August 97Google Scholar
  21. 21.
    T.J. Humanic, Phys. Rev. C50 (1994) 2525ADSGoogle Scholar
  22. 22.
    M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys. Rep. 227 (1993) 321ADSCrossRefGoogle Scholar
  23. 23.
    Z. Huang et al., Phys. Rev. D54 (1996) 750ADSGoogle Scholar
  24. 24.
    J. Randrup, Phys. Rev. D56 (1997) 4392ADSGoogle Scholar
  25. 25.
    Y.B. Zeldovich and E.V. Levich, Sov. Phys. JETP 28 (1969) 1287ADSGoogle Scholar
  26. 26.
    G. Welke, and G. Bertsch, Phys. Rev. C45 (1992) 1403.ADSGoogle Scholar
  27. 27.
    V. Koch and G. Welke, private communication (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Rene Bellwied
    • 1
  • Sean Gavin
    • 2
  • Tom Humanic
    • 3
  1. 1.Physics DepartmentWayne State UniversityDetroitUSA
  2. 2.Physics DepartmentUniversity of ArizonaTucsonUSA
  3. 3.Physics DepartmentThe Ohio State UniversityColumbusUSA

Personalised recommendations