Skip to main content

Multifragmentation at Intermediate Energy: Dynamics or Statistics?

  • Chapter
  • 123 Accesses

Abstract

Since the observation of a power-law behaviour in the charge distributions, characteristic of critical phenomena1, 2, in proton induced reactions at relativistic energies, the production of multiple intermediate mass fragments (IMF)6, 7, typically 3 ≤ Z ≤ 20, has been touted as a signature of the nuclear liquid-gas phase transition3, 4, 5. While this may be the case in peripheral reactions e. g. projectile or spectator breakup8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, the situation becomes less clear when one looks at more central reactions. In particular, it has been shown that the dissi-pative binary mechanism19, 20, 21, 22, 23 contributes 95% or more of the reaction cross section22, 23. Yet, as long as the sources are thermalized, it has been shown that a characteristic signature for phase coexistence can be extracted from the charge distributions24, 25. The situation is further complicated by the experimental observation of a significant contribution to the fragment yields from a third source formed between the projectile and target26, 27, 28, 29, 30, 31. Most of these observations were made using velocity plots (see for example ref. 27) which are useful in assigning a given particle to its primary source. This evidence points out the importance of dynamics in the entrance channel. Unfortunately, it tells very little about the intrinsic properties of the sources themselves. In particular, it does not disclosed the nature of the fragmentation process producing the detected “cold” IMF, i. e. at t → ∞.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Fisher, Physica 3, 225 (1967).

    Google Scholar 

  2. D. Stuffer and A. Aharony, Introduction to percolation theory, 2nd Ed. (Taylor and Francis, London, 1992) pp.181.

    Google Scholar 

  3. J.E. Finn et al., Phys. Rev. Lett 49, 1321 (1982).

    Article  ADS  Google Scholar 

  4. J.P. Siemens, Nature 305, 410 (1983).

    Article  ADS  Google Scholar 

  5. A.D. Panagiotou et al., Phys. Rev. Lett 52, 496 (1984).

    Article  ADS  Google Scholar 

  6. B. Borderie, Ann, de Phys. 17, 349 (1992).

    Article  ADS  Google Scholar 

  7. L.G. Moretto and G.J. Wozniak, Ann. Rev. Nucl. Part. Sci. 43, 379 (1993).

    Article  ADS  Google Scholar 

  8. P. Désesquelles et al., Phys. Rev. C 48, 1828 (1993).

    Article  ADS  Google Scholar 

  9. P. Kreutz et al., Nucl. Phys. A556, 672 (1993).

    ADS  Google Scholar 

  10. M.L. Gilkes et al., Phys. Rev. Lett 73, 1590 (1994).

    Article  ADS  Google Scholar 

  11. J. Pochodzalla et al., Phys. Rev. Lett 75, 1040 (1995).

    Article  ADS  Google Scholar 

  12. J. Benlliure, Ph.D. thesis, University of Valencia, Spain, 1995 (unpublished).

    Google Scholar 

  13. L. Beaulieu, Ph.D. thesis, Universit’e Laval, Canada, 1996 (unpublished).

    Google Scholar 

  14. P.F. Mastinu et al, Phys. Rev. Lett. 76, 2646 (1996).

    Article  ADS  Google Scholar 

  15. L. Beaulieu et al., Phys. Rev. C 54, R973 (1996).

    Article  ADS  Google Scholar 

  16. A. Schüttauf et al., Nucl. Phys. A 607, 457 (1996).

    Article  ADS  Google Scholar 

  17. J. Pochodzalla, Prog. Part. Nucl. Phys. 39, 443 (1997).

    Article  ADS  Google Scholar 

  18. J.A. Hauger et al., Phys. Rev. C 57, 764 (1998).

    Article  ADS  Google Scholar 

  19. B. Lott et al., Phys. Rev. Lett. 68, 3141 (1992).

    Article  ADS  Google Scholar 

  20. B.M. Quednau et al., Phys. Lett. B309, 10 (1993).

    ADS  Google Scholar 

  21. J.F. Lecolley et al, Phys. Lett. B325, 317 (1994).

    ADS  Google Scholar 

  22. J. Péter et al., Nucl. Phys. A593, 95 (1995).

    ADS  Google Scholar 

  23. L. Beaulieu et al., Phys. Rev. Lett. 77, 462 (1996).

    Article  ADS  Google Scholar 

  24. L. Phair et al., Phys. Rev. Lett. 75, 213 (1995).

    Article  ADS  Google Scholar 

  25. L.G. Moretto et al., Phys. Rev. Lett. 76, 372 (1996).

    Article  ADS  Google Scholar 

  26. C.P. Montoya et al., Phys. Rev. Lett 73, 3070 (1994).

    Article  ADS  Google Scholar 

  27. J. Lukasik et al., Phys. Rev. C 55, 1906 (1997).

    Article  ADS  Google Scholar 

  28. Y. Larochelle et al., Phys. Rev. C 55, 1869 (1997).

    Article  ADS  Google Scholar 

  29. J. Toke et al., Phys. Rev. Lett. 75, 2920 (1995).

    Article  ADS  Google Scholar 

  30. J.F. Lecolley et al., Phys. Lett. B 354, 202 (1995).

    Article  ADS  Google Scholar 

  31. J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996).

    Article  ADS  Google Scholar 

  32. J. Toke et al., Phys. Rev. Lett 77, 3514 (1996).

    Article  ADS  Google Scholar 

  33. J. Toke et al., Phys. Rev. C 56, R1683 (1997).

    Article  ADS  Google Scholar 

  34. L.G. Moretto et al., Phys. Rev. Lett. 74, 1530 (1995).

    Article  ADS  Google Scholar 

  35. K. Tso et al., Phys. Lett. B 361, 25 (1995).

    Article  ADS  Google Scholar 

  36. L.G. Moretto, et al., Phys. Rep. 287, 249 (1997).

    Article  ADS  Google Scholar 

  37. L. Phair et al., Phys. Rev. Lett 77, 822 (1996).

    Article  ADS  Google Scholar 

  38. L. Beaulieu et al., Submitted to Phys. Rev. Lett.

    Google Scholar 

  39. L.G. Moretto, et al., Phys. Rev. Lett. 71, 3935 (1993).

    Article  ADS  Google Scholar 

  40. M.B. Tsang et al., Phys. Rev. Lett. 80, 1178 (1998)

    Article  ADS  Google Scholar 

  41. W. Skulski et al., to appear in Proc. 13th Workshop on Nuclear Dynamics, Key West, Florida (1997).

    Google Scholar 

  42. R.T. de Souza et al., Nucl. Inst. Meth. A 311, 109 (1992).

    Google Scholar 

  43. W.C. Kehoe et al., Nucl. Inst. Meth. A 311, 258 (1992).

    Article  ADS  Google Scholar 

  44. J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).

    Article  ADS  Google Scholar 

  45. L. Phair et al., Accepted in Phys. Rev. Lett.

    Google Scholar 

  46. N. Colonna, private communication.

    Google Scholar 

  47. L. Phair et al., to be published.

    Google Scholar 

  48. D.W. Stracener et al., Nucl. Inst. Meth. A 294, 485 (1990).

    ADS  Google Scholar 

  49. L.G. Moretto, Phys. Rev. 179, 1176 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beaulieu, L., Phair, L., Moretto, L.G., Wozniak, G.J. (1998). Multifragmentation at Intermediate Energy: Dynamics or Statistics?. In: Bauer, W., Ritter, HG. (eds) Advances in Nuclear Dynamics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9089-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9089-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9091-7

  • Online ISBN: 978-1-4757-9089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics