Advertisement

Fast Particle Emission in Inelastic Channels of Heavy-Ion Collisions

  • J. A. Scarpaci
  • D. Beaumel
  • Y. Blumenfeld
  • Ph. Chomaz
  • N. Frascaria
  • J. Jongman
  • D. Lacroix
  • H. Laurent
  • I. Lhenry
  • V. Pascalon-Rozier
  • P. Roussel-Chomaz
  • J. C. Roynette
  • T. Suomijärvi
  • A. van der Woude

Abstract

Inelastic scattering of heavy ions has been extensively used to study the nuclear excitations. In particular the decay of giant resonances has been investigated to infer information on their microscopic structure1. In addition to the target excitation several processes are known to contribute to the inclusive inelastic spectrum. The quasi-elastic knock-out process is a major contribution in the inelastic scattering of protons and α-particle projectiles. For heavier ions this contribution is expected to be smaller but still persists. Proton emission coming from the knock-out process was clearly observed and was detected in the direction of the recoiling target nucleus. Another process contributing to the inclusive inelastic spectrum is the pick-up break-up process2. In this process the projectile picks up a nucleon from the target, leaving it in a 1-hole configuration. The ejectile will then break-up again and feed the inelastic channel. This process gives rise to a plateau spreading over a large energy interval centered slightly above the bombarding energy per nucleon, with a width determined by the specific decay characteristics of the system.

Keywords

Inelastic Scattering Angular Correlation Emission Angle Inelastic Channel Invariant Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Chomaz and N. Frascaria, Phys. Rep. 252 (1995) 275.ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Scarpaci et al., Phys. Lett. B258 (1991) 279.ADSGoogle Scholar
  3. 3.
    H. Laurent et al., Nouvelles du GANIL, Jan 1995.Google Scholar
  4. 4.
    V. Pascalon, PhD Thesis, Université d’Orsay, report IPNO-T-97-01, 1997 (France).Google Scholar
  5. 5.
    J.A. Scarpaci et al., Proceedings of the 14th RCNP OSAKA International Symposium, edited by H. Ejiri, T. Noro, K. Takahisa and H. Toki, (World Scientific, Singapore, 1996), p.312.Google Scholar
  6. 6.
    J.A. Scarpaci et al., Phys. Rev. C 56, 3187 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Scarpaci, PhD Thesis, Université d’Orsay, report IPNO-T-90-04, 1990 (France).Google Scholar
  8. 8.
    H. Laurent et al., Nucl. Inst. Meth., A326 (1993) 517.ADSGoogle Scholar
  9. 9.
    L. Bianchi et al., Nucl. Inst. Meth., A276 (1989) 568.Google Scholar
  10. 10.
    J. Lukasik et al., Phys. Rev. C 55, 1906 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    F. Pühlhofer, Nucl. Phys., A280 (1977) 267ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J. A. Scarpaci
    • 1
  • D. Beaumel
    • 1
  • Y. Blumenfeld
    • 1
  • Ph. Chomaz
    • 2
  • N. Frascaria
    • 1
  • J. Jongman
    • 1
  • D. Lacroix
    • 2
  • H. Laurent
    • 1
  • I. Lhenry
    • 1
  • V. Pascalon-Rozier
    • 1
  • P. Roussel-Chomaz
    • 2
  • J. C. Roynette
    • 1
  • T. Suomijärvi
    • 1
  • A. van der Woude
    • 3
  1. 1.Institut de Physique NucléaireOrsay CedexFrance
  2. 2.GANILCaen Cedex 05France
  3. 3.Kernfysich Versneller InstitutGroningenThe Netherlands

Personalised recommendations