Two-Proton Correlations Relative to the Reaction Plane

  • Sergei Y. Panitkin


Studies of the collective flow of hadrons in all of its forms - directed, elliptic, radial is an important direction in the understanding of the physics of heavy-ion collisions1. The asymmetries observed in azimuthal distributions in momentum space imply underlying asymmetries in configuration space. But the experimental information about spatial properties of the flowing nuclear systems is at best sparse and is mostly obtained with pion measurements. The E877 collaboration reported2 that the parameters of the pion source created in Au+Au collisions at 10.8 AGeV/c appear to be different for particles emitted at different angles relative to the reaction plane. The information about space-time properties of the proton effective source involved in directed flow is totally absent. Since nucleons are the main carriers of the directed flow in nucleus nucleus collisions at the AGS energies, it is interesting to check whether the parameters of the nucleon source, probed with the help of two-proton correlations, exhibit any dependencies or asymmetries related to the reaction plane orientation. In this paper we present the preliminary results of the first study of the proton correlation function’s dependence on the orientation of the reaction plane.


Correlation Function Reaction Plane Final State Interaction Nucleus Nucleus Collision Proton Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47 (1997) 663.ADSCrossRefGoogle Scholar
  2. 2.
    D. Miskowiec et al., E877 Coll., Nucl. Phys. A 590 (1995) 473c.CrossRefGoogle Scholar
  3. 3.
    J. Barrette et. al, Phys. Rev. Lett. 73 (1994) 2532.ADSCrossRefGoogle Scholar
  4. 4.
    J. Barrette et. al, Phys. Rev. C55 (1997) 1420.ADSGoogle Scholar
  5. 5.
    J. Barrette et. al, Phys. Rev. C56 (1997) 3254.ADSGoogle Scholar
  6. 6.
    S. Voloshin, Y. Zhang, Z. Phys. C70 (1996) 665.Google Scholar
  7. 7.
    S. Koonin, Phys. Lett. B 70 (1977) 43.ADSCrossRefGoogle Scholar
  8. 8.
    R. Lednicky, V.L. Lyuboshits, Sov. J. Nucl. Phys. 35 (1982) 770.Google Scholar
  9. 9.
    S.A. Voloshin, Phys. C55 (1997) 1630.Google Scholar
  10. 10.
    S.A. Voloshin et al., E877 Coll., Quark Matter 97 proseedings (to be published), also preprint nucl-ex/9802001.Google Scholar
  11. 11.
    The ALLADIN Collaboration, Darmstadt Nachrichten GSI 96-01 report.Google Scholar
  12. 12.
    H. Sorge, A. von Keitz, R. Mattiello, H. Stöcker, and W. Greiner, Phys. Lett. B 243 (1990) 7.ADSCrossRefGoogle Scholar
  13. 13.
    H. Sorge, R. Mattiello, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 68 (1992) 286.ADSCrossRefGoogle Scholar
  14. 14.
    S. Pratt et al., Phys. Rev. C 36 (1990) 2646.ADSCrossRefGoogle Scholar
  15. 15.
    S. Pratt et al., Nucl. Phys. A 566 (1994) 103c.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Sergei Y. Panitkin
    • 1
    • 2
  1. 1.Center for Nuclear Research, Physics DepartmentKent State UniversityKentUSA
  2. 2.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations