Skip to main content

What Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations are Telling us about Relativistic Heavy-Ion Collisions

  • Chapter
Advances in Nuclear Dynamics 4

Abstract

Many of you are vigorously searching for the quark-gluon plasma—a predicted new phase of nuclear matter where quarks roam almost freely throughout the medium instead of being confined to individual nucleons.1, 2 Such a plasma is believed to have existed in the first 10 μs of the universe during the big bang and could be produced in the laboratory during the little bang of a relativistic heavy-ion collision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Quark Matter’ 96, Proc. Twelth Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions, Heidelberg, Germany, 1996,” Nucl. Phys. A 610:1c (1996).

    Google Scholar 

  2. “Quark Matter’ 97, Proc. Thirteenth Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions, Tsukuba, Japan, 1997,” to be published.

    Google Scholar 

  3. S. Chapman and J. R. Nix, in “Advances in Nuclear Dynamics 2, Proc. 12th Winter Workshop on Nuclear Dynamics, Snowbird, Utah, 1996,” Plenum Press, New York (1996), p. 7.

    Google Scholar 

  4. S. Chapman and J. R. Nix, Phys. Rev. C 54:866 (1996).

    Article  ADS  Google Scholar 

  5. J. R. Nix, Phys. Rev. C (1998), to be published.

    Google Scholar 

  6. J. Bolz, U. Ornik, M. Plümer, B. R. Schlei, and R. M. Weiner, Phys. Lett. B 300:404 (1993).

    Article  ADS  Google Scholar 

  7. Particle Data Group, L. Montanet et al., Phys. Rev. D 50:1173 (1994).

    Article  ADS  Google Scholar 

  8. F. Cooper and G. Frye, Phys. Rev. D 10:186 (1974).

    Article  ADS  Google Scholar 

  9. F. Cooper, G. Frye, and E. Schonberg, Phys. Rev. D 11:192 (1975).

    Article  ADS  Google Scholar 

  10. J. D. Bjorken, Phys. Rev. D 27:140 (1983).

    Article  ADS  Google Scholar 

  11. S. Pratt, T. Csörgő, and J. Zimányi, Phys. Rev. C 42:2646 (1990).

    Article  ADS  Google Scholar 

  12. N. Xu, for the NA44 Collaboration, I. G. Bearden et al., Nucl. Phys. A 610:175c (1996).

    Article  ADS  Google Scholar 

  13. NA44 Collaboration, I. G. Bearden et al., Phys. Rev. Lett. 78:2080 (1997).

    Article  ADS  Google Scholar 

  14. E-802 Collaboration, T. Abbott et al., Phys. Rev. C 50:1024 (1994).

    Article  ADS  Google Scholar 

  15. E-802 Collaboration, T. V. A. Cianciolo (1995), private communication.

    Google Scholar 

  16. P. Möller and J. R. Nix, Nucl Phys. A 361:117 (1981).

    Article  ADS  Google Scholar 

  17. T. Csörgö and B. Lörstad, Nucl. Phys. A 590:465c (1995).

    Article  ADS  Google Scholar 

  18. T. Csörgö and B. Lörstad, Acta Phys. Hung. New Series, Heavy Ion Physics 4:221 (1996).

    Google Scholar 

  19. P. Braun-Munzinger, J. Stachel, J. P. Wessels, and N. Xu, Phys. Lett B 344:43 (1995).

    Article  ADS  Google Scholar 

  20. P. Braun-Munzinger, J. Stachel, J. P. Wessels, and N. Xu, Phys. Lett. B 365:1 (1996).

    Article  ADS  Google Scholar 

  21. S. Esumi, S. Chapman, H. van Hecke, and N. Xu, Phys. Rev. C 55:R2163 (1997).

    Article  ADS  Google Scholar 

  22. P. J. Siemens and J. O. Rasmussen, Phys. Rev. Lett. 42:880 (1979).

    Article  ADS  Google Scholar 

  23. E. Schnedermann, J. Sollfrank, and U. Heinz, in “Particle Production in Highly Excited Matter, Proc. NATO Advanced Study Institute on Particle Production in Highly Excited Matter, II Ciocco, Tuscany, Italy, 1992,” Plenum Press, New York (1993), p. 175.

    Google Scholar 

  24. E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev. C 48:2462 (1993).

    Article  ADS  Google Scholar 

  25. U. Ornik, M. Plümer, B. R. Schlei, D. Strottman, and R. M. Weiner, Phys. Rev. C 54:1381 (1996).

    Article  ADS  Google Scholar 

  26. B. Alper et al., Nucl Phys. B 100:237 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nix, J.R., Strottman, D., van Hecke, H.W., Schlei, B.R., Sullivan, J.P., Murray, M.J. (1998). What Invariant One-Particle Multiplicity Distributions and Two-Particle Correlations are Telling us about Relativistic Heavy-Ion Collisions. In: Bauer, W., Ritter, HG. (eds) Advances in Nuclear Dynamics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9089-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9089-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9091-7

  • Online ISBN: 978-1-4757-9089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics