Skip to main content

Statistical Models of Heavy Ion Collisions and Their Parallels

  • Chapter
Advances in Nuclear Dynamics 4
  • 122 Accesses

Abstract

Collisions between heavy ions produce highly fragmented nuclei, and at very high energies many new particles are produced. One approach to understanding the outcome of such collisions is based on statistical thermodynamics. This article discusses a simple statistical framework and shows its connection to several other approaches and fields. In the collision of two heavy ions or, in general, any two objects, the distribution of products and fragments is of concern. For example, the EOS collaboration1 reported a power law distribution of fragments with an exponent τ = 2.2. Namely, the number of clusters of size k falls as k −τ. This τ is related to the critical point properties of a nuclear liquid-gas phase transition, and using a percolative picture2 other critical exponents were obtained. Data on basalt-basalt collisions3 has a similar behavior: The number of fragments dN in a mass interval dm falls as dN/dm ~ m −τ with τ = 1.68, and this behavior occurs over 16 orders of magnitude in m. This feature also appears in the fragmentation of a piece of gypsum4 with an exponent τ = 1.63, and this property is used as an example of a behavior known as self-organized criticality.5 Even in the shuffling of a deck of cards, a power law can be found. Some of the specific ideas to be discussed will be illustrated with this simple example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilkes, M. L., et al., 1994, Phys. Rev. Lett. 72:1590.

    Article  ADS  Google Scholar 

  2. Stauffer, D., and Aharony, A., 1992, “Introduction to Percolation Theory,” Taylor and Francis, London.

    Google Scholar 

  3. Moore, H. J., and Gault, D. E., 1965, U. S. Geolog. Survey, Part B:127.

    Google Scholar 

  4. Oddershede, L., Dimon, P., and Bohr, J., 1993, Phys. Rev. Lett. 71:3107.

    Article  ADS  Google Scholar 

  5. Bak, P., Tang, C, and Wiesenfeld, K., 1987, Phys. Rev. Lett. 59:381.

    Article  MathSciNet  ADS  Google Scholar 

  6. Mekjian, A. Z., 1990, Phys. Rev. Lett. 64:2125; 1990, Phys. Rev. C41:2103.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Mekjian, A. Z., and Lee, S. J., 1991, Phys. Rev. A44:6294.

    ADS  Google Scholar 

  8. Chase, K. C, and Mekjian, A. Z., 1996, Phys. Lett. B379:50.

    ADS  Google Scholar 

  9. Chase, K. C, and Mekjian, A. Z., 1995, Phys. Rev. Lett. 75:4732.

    Article  ADS  Google Scholar 

  10. Chase, K. C, Bhattacharya, P., and Mekjian, A. Z., 1998, Phys. Rev. C57:882.

    ADS  Google Scholar 

  11. Mekjian, A. Z., and Chase, K. C, 1997, Phys. Lett. A229:340.

    MathSciNet  ADS  Google Scholar 

  12. Bauer, W., Dean, D. R., Mosel, U., and Post, U., 1985, Phys. Lett. 150B:53.

    ADS  Google Scholar 

  13. Campi, X., 1987, J. Phys. A19:L1003.

    Google Scholar 

  14. Pan, J., and DasGupta, S., 1995, Phys. Lett. B344:29; 1995, Phys. Rev. C51:1384.

    ADS  Google Scholar 

  15. Edwards, S. F., and Anderson, P. W., 1975, J. Phys. F: Met. Phys. 5:965.

    Article  ADS  Google Scholar 

  16. Sherrington, D., and Kirkpatrick, S., 1975, Phys. Rev. Lett. 35:1792.

    Article  ADS  Google Scholar 

  17. Derrida, B., and Flyvbjerg, H., 1987, J. Phys. A20:5273; 1987, J. de Phys. 48:971.

    MathSciNet  ADS  Google Scholar 

  18. Feynman, R. P., 1972, “Statistical Mechanics,” Addision-Wesley, Reading, MA.

    Google Scholar 

  19. Chase, K., Mekjian, A. Z., and Zamick, L., Rutgers University Report (unpublished).

    Google Scholar 

  20. DasGupta, S., and Mekjian, A. Z., 1998, Phys. Rev. C

    Google Scholar 

  21. Schroeder, M. R., 1991, “Fractals, Chaos, Power Laws,” Freeman, New York.

    MATH  Google Scholar 

  22. Mandelbrot, B. B., 1982, “The Fractal Geometry of Nature,” Freeman, New York.

    MATH  Google Scholar 

  23. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., and Virasoro, M., 1984, J. Phys. (Paris) 45:843.

    Google Scholar 

  24. Rajagopal, K., and Wilczek, F., 1993, Nucl. Phys. B309:395; 1993, B404:577.

    Article  ADS  Google Scholar 

  25. Horn, D., and Silver, R., 1971, Ann. Phys. (NY) 66:509.

    Article  ADS  Google Scholar 

  26. Kowalski, K. L., and Taylor, C. C., Case Western Reserve University Report No. 92-6 hep-ph/9211282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mekjian, A.Z. (1998). Statistical Models of Heavy Ion Collisions and Their Parallels. In: Bauer, W., Ritter, HG. (eds) Advances in Nuclear Dynamics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9089-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9089-4_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9091-7

  • Online ISBN: 978-1-4757-9089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics