Skip to main content

Physics of the STAR Experiment at RHIC

  • Chapter
Advances in Nuclear Dynamics 4

Abstract

The primary motivation for studying relativistic heavy ion collisions is to gain an understanding of the equation of state of nuclear, hadronic and partonic matter, commonly referred to as nuclear matter. This endeavor is of cross-disciplinary interest to nuclear physics, astrophysics, cosmology and particle physics. Displayed in Fig. 1 is a schematic phase diagram of nuclear matter. The behavior of nuclear matter as a function of temperature and density (or pressure), shown in Fig. 1, is governed by its equation of state. Conventional nuclear physics is concerned primarily with the lower left portion of the diagram at low temperatures and near normal nuclear matter density. Here normal nuclei exist and at low excitation a liquid-gas phase transition is expected to occur. This is the focus of experimental studies using low energy heavy ions. At somewhat higher excitation, nucleons are excited into baryonic resonance states, along with accompanying particle production and hadronic resonance formation. In heavy ion collisions, such excitation is expected to create hadronic resonance matter. This region is presently accessible in heavy ion studies at the AGS accelerator facility at Brookhaven National Laboratory and at the SPS accelerator facility at CERN. As seen in the diagram, there is a possibility that some part of these collisions traverse the transition region into the quark-gluon plasma regime. Formation of a quark-gluon plasma, a deconfined state of quarks and gluons,1 is the major focus of relativistic heavy ion experiments at higher energies. For this purpose the Relativistic Heavy Ion Collider (RHIC)2 and associated experiments are presently under construction at Brookhaven for operation in 1999, and operation with heavy ions is also being planned for the LHC in 2005. As seen in the phase diagram, the anticipated temperature and density trajectories at RHIC (and for LHC heavy ions) lie close to that of the early universe, while those at the AGS and SPS occur at higher baryon densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Collins and M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  2. G. Chapline and; L. Susskind, Phys. Rev. D20, 2610 (1979).

    ADS  Google Scholar 

  3. Conceptual Design of the Relativistic Heavy Ion Collider, Brookhaven National Laboratory Report BNL 52195 (1989).

    Google Scholar 

  4. T.D. Lee and G.C. Wick, Phys. Rev. D9, 2291 (1974)

    ADS  Google Scholar 

  5. T.D. Lee, Rev. Mod. Phys. 47, 267 (1975).

    Article  ADS  Google Scholar 

  6. Conceptual Design Report for the Solenoidal Tracker At RHIC, The STAR Collaboration, PUB-5347 (1992); J.W. Harris et al., Nucl. Phys. A566, 277c (1994).

    ADS  Google Scholar 

  7. A. Boucham, et al., “Proposal for a Silicon Strip Detector for STAR”, SUBATECH(Nantes)-IRES(Strasbourg)-LEPSI(Strasbourg)-Wayne State U. Proposal 1998.

    Google Scholar 

  8. J. Berger, D. Roehrich, D. Schmischke, R. Stock, V. Lindenstruth, “Level-3 Trigger and Data Compression System” U. Frankfurt-U. Heidelberg Proposal 1998.

    Google Scholar 

  9. D.P. Mahapatra, et al., “Photon Multiplicity Measurements in the STAR Detector at RHIC”, Bhubaneswar-Calcutta-Chandigarh-Jaipur-Jammu-Mumbai Proposal, VECC Reports VECC/EXP/97-04 and 97-22.

    Google Scholar 

  10. S. Klein and E. Scannapieco, LBNL Report LBNL-40495, Proceedings on Intersections Between Particle and Nuclear Physics: 6th Conference, ed. T.W. Donnelly, AIP Press, p. 274 (1997); J. Nystrand and S. Klein, LBNL Report LBNL-41111, in Proceedings of Hadron’ 97, Brookhaven National Laboratory, August 25–30, 1997.

    Google Scholar 

  11. see paper by T. Hallman, these Proceedings.

    Google Scholar 

  12. K. Geiger and B. Mueller, Nucl. Phys. B369, 600 (1992).

    Article  ADS  Google Scholar 

  13. E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992).

    Article  ADS  Google Scholar 

  14. K. Wilson, Proceedings of Quark Matter’ 95 Pre-conference Workshop, ed. J. Thomas and T. Hallman, Report No. UCRL-ID-121571, p. 55 (1995).

    Google Scholar 

  15. J. Rafelski and B. Mueller, Phys. Rev. Lett. 48, 1066 (1982).

    Article  ADS  Google Scholar 

  16. J. Rafelski and A. Schnabel, “Intersections Between Nuclear and Particle Physics,” AIP Proceedings No. 176, 1068 (1988).

    Google Scholar 

  17. J. Rafelski, Phys. Rep. 88, 331 (1982).

    Google Scholar 

  18. M. Gyulassy and M. Pluemmer, Phys. Lett. B243 (1990) 432

    ADS  Google Scholar 

  19. X.N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

    Article  ADS  Google Scholar 

  20. S. Pratt, Phys. Rev. D33, 1314 (1986)

    ADS  Google Scholar 

  21. G. Bertsch, M. Gong and M. Tohyama, Phys. Rev. C37, 1896 (1988) and

    ADS  Google Scholar 

  22. G. Bertsch, Nucl. Phys. A498, 151c (1989).

    Google Scholar 

  23. K.S. Lee, M.J. Rhoades-Brown and U. Heinz, Phys. Rev. C37, 1463 (1988).

    ADS  Google Scholar 

  24. M. Gyulassy, Lawrence Berkeley Laboratory Preprint LBL-32051 (1992).

    Google Scholar 

  25. M. Gyulassy, Nucl. Phys. A400, 31c (1983)

    ADS  Google Scholar 

  26. L. Van Hove, Z. Phys. C27, 135 (1985).

    ADS  Google Scholar 

  27. A. Shor, Phys. Rev. Lett. 54, 1122 (1985).

    Article  ADS  Google Scholar 

  28. R. D. Pisarski and F. Wilczek, Phys. Rev. D29, 338 (1984)

    ADS  Google Scholar 

  29. T. Hatsuda and T. Kunihiro, Phys. Lett. B185, 304 (1987).

    ADS  Google Scholar 

  30. J.D. Bjorken and L.D. McLerran, Phys. Rev. D20, 2353 (1979) and

    ADS  Google Scholar 

  31. Y. Takahashi and S. Dake, Nucl. Phys. A461, 263C (1987).

    ADS  Google Scholar 

  32. J.D. Bjorken, Int. J. Mod. Phys. A7, 4189 (1992)

    ADS  Google Scholar 

  33. K. Rajagopal and F. Wilczek, Nucl. Phys. B404, 577 (1993).

    Article  ADS  Google Scholar 

  34. R. Bellwied, Proceedings of Quark Matter’ 95 Pre-conference Workshop, ed. J. Thomas and T. Hallman, Report No. UCRL-ID-121571, p. 41 (1995).

    Google Scholar 

  35. E.V. Shuryak and O.V. Zhirov, Phys. Lett. B89, 253 (1980) and Phys. Lett. B171, 99 (1986).

    ADS  Google Scholar 

  36. P.V. Landshoff, Nucl. Phys. A498, 217 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, J.W., STAR Collaboration. (1998). Physics of the STAR Experiment at RHIC. In: Bauer, W., Ritter, HG. (eds) Advances in Nuclear Dynamics 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9089-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9089-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9091-7

  • Online ISBN: 978-1-4757-9089-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics